
www.manaraa.com

PROTECTING CONFIDENTIAL INFORMATION
FROM MALICIOUS SOFTWARE

by

Kevin R. Borders

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2009

Doctoral Committee:

Professor Atul Prakash, Chair
Professor Peter M. Chen
Professor Myron P. Gutmann
Assistant Professor Morley Mao
Associate Professor Patrick D. McDaniel, Penn State University

www.manaraa.com

© Kevin R. Borders 2009

All Rights Reserved

www.manaraa.com

 ii

ACKNOWLEDGEMENTS

I am indebted to everyone who has taken part in my education starting from an early age.

In chronological order, I would like to thank my parents, Gwen and John, for providing an

intellectually stimulating environment at home and making sure I was always challenged in

school.

There are several teachers who have had an impact on me throughout grade school and

high school. I would like to thank Jon Sevald for teaching me to think creatively and offering

nothing but words of encouragement when I said that I wanted to get a Ph. D. at such a young

age. I would also like to thank Mary Kay Glazek and my other English teachers at Roeper for

helping me become a good writer. I am thankful for Chris Bradley, who taught me everything I

know about math. Pat Vance and Dennis King were the best science instructors one could have

asked for. They taught me the fundamentals of problem solving and experimentation that are

invaluable in any field of science.

Before working at the Red Team, I knew nothing about computer security. I would like to

thank everyone there, especially Justin, Diana, Mike, Paul, and Shawn, for exposing me to such

an exciting area of computer science.

I am grateful to have such a loving and supportive fiancée, Jennifer Cendrowski, who has

always valued education and encouraged me to pursue my Ph. D.

Many of my undergraduate courses at the University of Michigan were excellent, but

Professor Brian Noble’s operating systems class and Professor Mark Brehob’s computer

architecture class were exceptionally inspiring, and I am thankful to them for making education a

high priority.

Throughout graduate school, feedback and collaboration with peers has helped

tremendously. I would like to thank co-authors who I have had the pleasure of working with: Xin

Zhao, Laura Falk, Patrick Traynor, Kevin Butler, and William Enck.

I greatly appreciate the efforts of my thesis committee members not only in helping with

this dissertation, but also throughout school. I would like to thank Professor Peter Chen for

attending nearly all of my practice talks and asking tough questions that have influenced the

www.manaraa.com

 iii

direction of my research. I want to thank Professor Myron Gutmann for providing me input on

the Storage Capsule research from the most important perspective: that of the user. I am grateful

to Professor Morley Mao for affording me the opportunity to help teach her networking course.

Finally, I would like to thank Professor Patrick McDaniel for always giving me great feedback

and reviewing several papers on short notice, including the original Web Tap paper.

Last, I want to thank my advisor, Professor Atul Prakash, without whom I may not have

pursued a Ph. D. After completing a project for his class, he worked with me day and night to

transform the research into a real publication. Following the initial project, he welcomed me into

his group and continued to support all of the research ideas – the more farfetched the better, it

seems – over the next several years. I am also grateful that he gave me the opportunity to pursue

commercialization of the original Web Tap concept, the experience from which has led to a large

portion of the results in this thesis. Finally, I would like to thank Professor Prakash for imparting

his wisdom and teaching me to be a successful researcher over the past five years, which was

time very well spent.

www.manaraa.com

 iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... ii

LIST OF FIGURES... vi

LIST OF TABLES... viii

CHAPTER

1. INTRODUCTION ... 1

1.1 OVERVIEW ... 1

1.2 HOST-LEVEL CONFIDENTIALITY PROTECTION ... 3

1.3 NETWORK-LEVEL CONFIDENTIALITY PROTECTION.. 5

1.4 CONTRIBUTIONS... 7

1.5 THESIS ORGANIZATION .. 8

2. SURVEY OF RELATED WORK.. 9

2.1 OVERVIEW ... 9

2.2 HOST-LEVEL SECURITY CONTROLS ... 9

2.3 NETWORK-LEVEL SECURITY CONTROLS.. 17

3. PROTECTING CONFIDENTIAL DATA ON PERSONAL COMPUTERS WITH

STORAGE CAPSULES .. 24

3.1 INTRODUCTION... 24

3.2 OVERVIEW ... 26

3.3 SYSTEM ARCHITECTURE... 29

3.4 STORAGE CAPSULE OPERATION ... 31

3.5 COVERT CHANNEL ANALYSIS .. 36

3.6 PERFORMANCE EVALUATION ... 45

3.7 CONCLUSION AND FUTURE WORK.. 48

4. NETWORK-BASED CONFIDENTIALITY THREAT DETECTION..................................... 50

4.1 OVERVIEW ... 50

4.2 RELATED WORK... 52

www.manaraa.com

 v

4.3 TIMING ANALYSIS .. 53

4.4 FORMATTING ANALYSIS... 58

4.5 TRAFFIC EVALUATION.. 60

4.6 HTTP TUNNEL EVALUATION ... 62

4.7 FILTER VULNERABILITIES .. 65

4.8 CONCLUSION AND FUTURE WORK.. 66

5. QUANTIFYING INFORMATION LEAKS IN OUTBOUND WEB TRAFFIC 67

5.1 OVERVIEW ... 67

5.2 RELATED WORK... 71

5.3 PROBLEM DESCRIPTION.. 72

5.4 STATIC CONTENT ANALYSIS .. 73

5.5 DYNAMIC CONTENT ANALYSIS .. 76

5.6 REQUEST TIMING INFORMATION .. 79

5.7 EVALUATION.. 81

5.8 ENTROPY MITIGATION STRATEGIES ... 85

5.9 CONCLUSION AND FUTURE WORK.. 87

6. INFERRING MALICIOUS ACTIVITY WITH A WHITELIST .. 89

6.1 OVERVIEW ... 89

6.2 PRIOR WHITELISTING SYSTEMS.. 91

6.3 WHITELIST DESIGN .. 93

6.4 WHITELIST CONSTRUCTION METHODOLOGY ... 94

6.5 CASE STUDY: CONSTRUCTING A WHITELIST FOR A CORPORATE NETWORK......................... 99

6.6 CONCLUSION AND FUTURE WORK.. 103

7. LIMITATIONS.. 104

7.1 OVERVIEW ... 104

7.2 STORAGE CAPSULE LIMITATIONS... 104

7.3 FORMATTING AND TIMING LIMITATIONS.. 106

7.4 LEAK QUANTIFICATION LIMITATIONS .. 107

7.5 WHITELISTING LIMITATIONS .. 108

8. CONCLUSION AND FUTURE WORK ... 110

8.1 CONTRIBUTIONS... 110

8.2 FUTURE WORK... 113

BIBLIOGRAPHY... 115

www.manaraa.com

 vi

LIST OF FIGURES

Figure

2.1 Architecture of a virtual machine system. One or more guest virtual machines
rely on the virtual machine monitor (VMM) to multiplex hardware resources
for each VM. The VMM also provides resource and fault isolation between the
virtual machines ... 12

3.1 In the Storage Capsule system architecture, the user’s primary operating
system runs in a virtual machine. The secure VM handles encryption and
declassification. The dotted black line surrounding the primary VM indicates
that it is not trusted. The other system components are trusted............................ 27

3.2 Transition times for different amounts of primary VM memory. (a) to secure
mode with background snapshot, (b) to secure mode with full snapshot, (c) to
normal mode with background restore, and (d) to normal mode with full
restore. .. 45

3.3 Results from building Apache with a native OS, a virtual machine, a virtual
machine running TrueCrypt, and Capsule. Storage Capsules add only a 5%
overhead compared to a VM with TrueCrypt, 18% compared to a plain VM,
and 38% overhead compared to a native OS.. 47

4.1 (a) Seven sites were detected by usage counts for ~400 sites over 8 hours with
a detection threshold of 16% (b) Nine Sites were detected using the deviation
over mean during an 8 hour period with a detection threshold of 3.3.................. 54

4.2 (a) Aggregate delay-time CDF with jumps at t = 30 seconds, 4 minutes, and 5
minutes. (b) Y-derivative of CDF and running average used to detect
anomalies.. 55

4.3 Equations for the derivative and average of the delay times seen in Figure 4.2 .. 56

4.4 Activity by time of day for one randomly chosen user. 12 AM to 1 AM is on
the left, and 11 PM to 12 AM is on the right.. 57

4.5 A sample HTTP GET request sent to Google.com by the Firefox browser
(version 2.0.0.12) following a search for the term “security.” The “User-Agent”
header field contains a compound value identifying the operating system
(Windows XP), the language (en-US), and the browser 59

5.1 Graph of outbound web traffic during a typical work day with a 100 Kilobyte
information leak inserted. (a) shows the raw byte count, where the leak is

www.manaraa.com

 vii

barely noticeable, and (b) shows the precise unconstrained bandwidth
measurement, in which the leak stands out prominently...................................... 68

5.2 (a) A sample HTTP POST request for submitting contact information to
download a file. Line 1 is the HTTP request line. Lines marked 2 are request
headers, and line 3 is the request body. Bytes counted by a simple algorithm
are highlighted in gray. UI-layer data is highlighted in black with white text.
(b) A sample HTML document at http://www.example.com/download.html
that generated request (a). .. 73

5.3 Cumulative distribution of delay times for all observed HTTP requests. P(t<=3)
= .794, P(t<=192) = .976, P(t<=3600) = .9996 .. 79

5.4 (a) The distribution of precise, gzip, simple, and raw request byte counts for
real web traffic. (b) Distribution of request byte counts as percentage of raw for
precise, gzip, and simple algorithms. ... 83

6.1 New whitelist entries per month over a two-year test deployment. Months with
few or no entries correspond to data loss. Toward the end of the deployment,
the rate of whitelist entries approaches 50 per month .. 100

www.manaraa.com

 viii

LIST OF TABLES

Table

4.1 Number of alerts and the percentage of alerts that are false positives for each
filter. The aggregate row shows results from running all the filters in parallel ... 60

5.1 Bandwidth measurement results for six web browsing scenarios using four
different measurement techniques, along with the average bytes/request for the
precise technique.. 80

6.1 Four sample alerts that indicate various formatting, timing, and bandwidth
anomalies. The server name may not be present for hosts without DNS entries . 93

6.2 Five sample whitelist entries specifying legitimate network behavior. The first
six columns dictate alerts that the entry will match, and the Application
specifies association of those alerts with an application, or ignoring them
altogether (“—”). Entries with “All Timing” match alerts from traffic with
regular timer-driven requests to the given servers. “User-Agent” entries match
HTTP requests that have a given user agent (regular expressions are allowed).
The “Bandwidth-1” entry matches bandwidth alerts that exceed the first
bandwidth threshold ... 94

www.manaraa.com

 1

CHAPTER 1

INTRODUCTION

1.1 Overview

Confidentiality is one of the cornerstones of information security. Ensuring

confidentiality has been a major challenge over the past half-century as more information moves

from paper and spoken word into digital form. Computers are immensely complex in comparison

to their paper counterparts, leading to a plethora of previously unseen security vulnerabilities.

Even more problematic is the constant change and increased interaction between computing

systems, driven by the need for new functionality. Today, we are far from solving the problem of

protecting confidential digital information, as is evidenced by an endless stream of high-profile

information leaks [AP05, Katayama03, Reuters06].

One common threat to confidentiality comes from a lack of integrity. When computers

load programs and files from low-integrity sources, such as the Internet, they are exposed to

hackers, viruses, and other security threats. Traditional methods for maintaining confidentiality

involve protecting software that handles sensitive information from low-integrity data, and

checking that such software does not leak secret information. Unfortunately, this is in direct

opposition to the trend towards increased interaction between computer systems, which is

motivated by collaborative applications and the Internet. These opposing objectives force a

tradeoff between utility and security when determining the size of the set of systems that must

have high integrity, also known as the trusted computing base (TCB). A true high-integrity

computing system would be detrimental to productivity, and a completely open system would

offer no integrity guarantees.

Some secure systems try to balance the need for integrity and usability. Trusted

computing platforms such as Terra [Garfinkel03a] and trusted boot [Sailer04] verify software

integrity at startup and when running new applications. This guarantees that the system will start

in a clean state and that it will only execute trusted programs. Despite its benefits, however,

www.manaraa.com

 2

trusted computing suffers from a number of problems. First, verifying every binary makes

installing and managing software much more cumbersome. This is one of the reasons why trusted

computing platforms are not widely used. Trusted computing also assumes that new software

installed by the user does not contain Trojan horse malware, which is not always the case. While

trusted computing platforms do help protect confidentiality, they are still vulnerable to attack.

The security systems presented in this thesis take an alternate approach to preserving

confidentiality. Instead of trying to protect computers from malicious inputs, their goal is to make

it harder for computers that have been compromised with malicious software to leak sensitive

information. This approach is more widely applicable than integrity-preserving solutions, as a

huge portion of personal computers today – 100 to 150 million by one estimate [Weber07] – are

already infected with malware, and many more are vulnerable. Protecting confidentiality on end

hosts is essential, even in the presence of malicious software, as they are the primary portal for

creating, viewing, and editing nearly all sensitive digital information.

A number of other solutions exist that help protect confidentiality in low-integrity

systems. One example is mandatory access control (MAC), which is used by Security-Enhanced

Linux (SELinux) [NSA09]. MAC can control the flow of sensitive data with policies that mark

entities that read secret information as secret, and then prevent those entities from communicating

over the network. This policy set achieves the goal of preventing leaks, but it also prevents most

useful applications from running. Furthermore, correct policy configuration with SELinux can be

complicated and difficult even for expert users. A different embodiment of the same principle can

be seen in an “air gap” separated network. In an air gap network, a small group of computers is

physically separated from the external network, thus completely preventing information flow to

that network. While this is also an effective way to protect confidentiality, computers in air gap

networks cannot connect to the Internet, which greatly limits their utility. In general, current

flow-control mechanisms that block low-integrity systems from leaking data are severely

detrimental to usability. This is reinforced by the unpopularity of both mandatory access control

with strict information flow policies and air gap networks, which are rarely used outside of

protecting classified government information.

Although it is difficult to provide guaranteed confidentiality for low-integrity computers,

various network monitoring systems try to combat different threats to confidentiality. Intrusion

detection systems (IDSs) aim to detect nefarious network activity [IBM09a, Paxson98,

Roesch99]. However, IDSs only provide integrity protection by detecting malicious software.

They do not detect leaks themselves and do not help against insider leaks. One form of direct

confidentiality protection is a web content filter, which blocks access to unwanted web servers

www.manaraa.com

 3

[OpenDNS09, Websense09]. However, content filters are not effective against a smart adversary

who posts information to a legitimate website, such as WikiPedia.org, and retrieves it from

another location. Data loss prevention (DLP) systems are specifically designed to detect and

block sensitive information that is flowing over the network [RSA07, Vontu09]. Unfortunately,

they only examine the content of network traffic and are unable to detect encrypted or obfuscated

leaks.

The host-level security systems presented in this thesis aim to provide the same level of

security as mandatory access control, but are compatible with standard operating systems and

applications. The goal of network monitoring systems presented in this thesis is to deliver better

protection against a wider array of threats than current solutions. The specific contributions of

this work include a host-based system for securely editing sensitive documents on a low-integrity

machine, a network monitoring system that identifies traffic from different web applications, and

techniques for precisely quantifying network-based information leaks. A combination of host-

and network-based security mechanisms provides multi-tiered protection that can take advantage

of increased control on the host and enterprise-wide visibility at the network edge. All of the

security systems presented here operate under the assumption that end hosts may be compromised

with malicious software, and do they not require assistance from secure hardware. The network-

based leak measurement techniques further assume that clients may be under the control of inside

attackers.

1.2 Host-Level Confidentiality Protection

The first security system that we discuss in Chapter 3 is the Storage Capsule system. The

goal of Storage Capsules is to allow users to securely edit confidential documents with a

computer that has been compromised by malicious software. Storage Capsules assume that the

user, hardware, and some low-level software components are trusted. However, they do not rely

on the user’s main operating system or applications to maintain any integrity. Storage Capsules

protect sensitive information even if the operating system and applications accessing the data are

compromised with malicious software.

From the user’s perspective, Storage Capsules are similar to other encrypted file

containers, such those provided by various compression utilities [Roshal09, Winzip09] and

encryption tools [TrueCrypt09]. The primary difference comes when the user opens a Storage

Capsule. The system will disable network and persistent disk output while the user has access to

the decrypted Storage Capsule contents. After the user has finished editing the Storage Capsule,

www.manaraa.com

 4

the all changes that have been made, except those to the Capsule itself, will be erased by reverting

the system to its original state. The goal is to prevent malicious software on the computer from

leaking information. Traditional encrypted file containers, in comparison, completely expose

sensitive plain-text to any malware running on the computer. The user could disable the network

adapter while accessing sensitive data, but malware could still record information and send it out

at a later time.

In the Storage Capsule architecture, a trusted component sits below the primary operating

system, where it can mediate device access. The Capsule system uses keyboard escape sequences,

which are intercepted by the trusted component, to transition between normal mode and secure

editing mode. The process of editing an encrypted Storage Capsule can be broken down into the

following steps:

1. The user opens a Capsule with an application that notifies the trusted component to enter

secure editing mode.

2. The application asks the user to press a key escape sequence, which the trusted component

will trap. The component will also verify that it has been notified about a transition.

3. The Capsule system saves the primary operating system’s state, disables network and

device output, and then informs the user that it is safe to decrypt and begin editing the

Storage Capsule.

4. The user presses a second key escape sequence. This causes the trusted component to save

changes to the Storage Capsule. It then discards all other changes and restores the primary

OS back to a snapshot of its original state.

This editing process enables the user to make changes to a Storage Capsule with a compromised

computer, save the changes, and then store or transmit the Capsule on an insecure medium.

Storage Capsules also allow the user to read encrypted files that come from low-integrity sources,

such as e-mail, without having to worry about whether a file will compromise the computer. Even

if it does, it will not affect the confidentiality of any files in a Storage Capsule.

Like traditional mandatory access control systems, Storage Capsules are also prone to

information leakage via covert channels. If the primary operating system is able to affect the

computer’s state in any way that is detectable following a snapshot restoration, then it can leak

data. The Capsule system makes an effort to minimize the scope and severity of covert channels.

It mitigates timing channels by only leaving secure editing mode at the request of the user via a

secure keyboard input channel. This prevents a compromised primary OS from controlling the

transition time. Storage Capsules also have a fixed size, and are completely re-encrypted every

time their cipher-text is accessed by the primary OS outside of secure mode. This prevents

www.manaraa.com

 5

malware from manipulating Storage Capsule contents or attributes to leak information. There are

also many lower-level covert channels, such as CPU micro-architecture state, that are difficult to

block. This thesis makes an effort to enumerate and suggest countermeasures for many of these

covert channels.

There are some scenarios where Storage Capsules cannot protect sensitive information.

One such case is when the application that handles sensitive data requires network interaction to

function properly. For example, Storage Capsules cannot protect account numbers while

accessing an online banking service or purchasing an item online with a credit card. Storage

Capsules are also incompatible with mobile devices that use light-weight operating systems and

cannot support virtual machines. Finally, Storage Capsules do not protect against a compromised

virtual machine monitor, compromised hardware, or a malicious user. They operate under the

assumption that the user is helping to protect sensitive information and the computer is physically

secure. In scenarios where these assumptions do not hold, the network monitoring systems

presented in this thesis are a better solution for protecting confidentiality.

1.3 Network-Level Confidentiality Protection

The second part of this thesis focuses on methods for protecting confidentiality that

involve monitoring network traffic. Being able to detect breaches of confidentiality, and of

integrity, at the network level is important because an attacker may bypass host-based protection

mechanisms and subvert individual systems on a network. One way this can happen is if

somebody brings a mobile device into an enterprise from an outside environment with more lax

security. An even more serious threat is that of an inside attacker who breaks host-based security

and sends confidential information out over the network. The network-based protection systems

presented in this thesis are designed to handle threats from completely unmanaged clients and

clients under the control of malicious insiders.

 In Chapter 4, we explore techniques for detecting and differentiating traffic from various

web applications. Being able to identify programs by looking at their network traffic allows

administrators to quickly respond to confidentiality threats. The most direct threat would be a

spyware program whose purpose is stealing sensitive information. However, legitimate programs

can also threaten confidentiality. File sharing software may download other programs that come

with Trojan horse malware. Instant messaging clients make it easy for users to send files or other

sensitive data over the Internet. Detecting the presence of such unwanted programs benefits

overall network security.

www.manaraa.com

 6

Every application that accesses the Internet has a traffic profile that includes its request

formatting, request timing, and the servers with which it communicates. There are particular

fields in web requests whose values are specific to the application that generated each request.

Grouping requests according to these fields helps classify traffic coming from different

applications. Automated processes that generate web traffic also exhibit vastly different timing

characteristics than standard human web browsing. Looking at the delay between requests to the

same server, their time of day, and the overall request regularity uncovers timer-driven requests

and other automated activity. The timing analysis techniques, combined with request format

processing, yield low-level alerts detailing web activity from different programs. These alerts are

later filtered with a whitelist, which maps them to profiles of specific applications.

This thesis next examines methods for precisely measuring information flow in outbound

web traffic in Chapter 5. While one can measure raw web traffic bandwidth, it is usually much

larger than the true amount of information conveyed by the traffic. The key insight here is that

large portions of web requests are fixed by the protocol or repeated from previous network

messages. The measurement algorithms will construct a representation of expected web traffic,

and then compute the difference, in terms of information content, between the actual and the

expected requests. This process is similar to a compression algorithm that constructs a

distribution of expected strings and then distills the actual strings down to their true information

content (entropy) with respect to the distribution. The resulting byte measurement represents the

amount of information needed to reconstruct the request stream, which is a sound upper limit on

how much data the client could have leaked, including covert channels. For typical web traffic,

this number is two to three orders of magnitude smaller than a naïve raw measurement. The

precise bandwidth computations facilitate identification of true network-based leaks by reducing

measurements for benign traffic.

The final part of this thesis involves processing low-level information about web

application activity and outbound bandwidth utilization. Most request formatting, timing, and

bandwidth anomalies are caused by legitimate applications. To filter out alert information from

legitimate programs, we employ a whitelist, which contains network activity profiles for known

applications. Alerts that remain after whitelist processing indicate suspicious activity. As part of

this work, we generated whitelist entries for over 500 legitimate applications during a two-year

test deployment in a corporate network. Based on enterprise deployment experience, this thesis

outlines a systematic approach for generating new whitelist entries that minimizes the risk of

opening a backdoor for attackers or inadvertently trusting malicious software. The process for

updating the whitelist is designed to be straightforward enough for security analysts to add new

www.manaraa.com

 7

entries without the help of an engineer. Based on the corporate test deployment, we show that the

network monitoring systems presented in this thesis effectively detect threats to confidentiality,

and have a reasonable overhead for alert analysis and whitelist maintenance.

1.4 Contributions

1.4.1 Storage Capsules

This thesis presents the design, implementation, and evaluation of a system for protecting

confidential files with Storage Capsules. Storage Capsules allow safe access to sensitive files

from a normal operating system with standard applications. The Capsule system is able to switch

modes within one OS rather than requiring separate operating systems or processes for different

modes. Storage Capsules provide the same guarantees as traditional mandatory access control, but

are compatible with existing software. This thesis also makes contributions in the understanding

of covert channels in such a system. In particular, it looks at how virtualization technology can

create new covert channels and how previously explored covert channels behave differently when

the threat model is a low-security virtual machine running after a high-security virtual machine,

on the same computer, rather than two processes running side-by-side.

1.4.2 Detecting Web Applications

Programmatic web requests differ significantly from those driven by human input. This

work explores three aspects of web requests that make it possible to identify whether they come

from a network application, and, if so, which one. Network application requests often have

unique formatting that immediately identifies them. Applications that use generic formatting or

emulate that of a web browser can be further differentiated by examining the regularity of their

requests, the delay times in between individual requests, and the time of day at which requests

occur. These aspects of web traffic allow us to detect the presence of different web applications,

including malware and unwanted programs, solely by examining network activity.

1.4.3 Quantifying Information Leaks

A large portion of typical outbound web traffic is repeated or constrained by the protocol.

As such, it does not contain any information from the client. Filtering out this constrained data

helps to isolate potential information leaks in unconstrained traffic. This thesis explores original

methods for determining what portion of outbound web request data can be discounted in this

manner. The leak measurement techniques involve computing expected headers, links, and form

www.manaraa.com

 8

fields by processing prior requests and server responses. In addition to static parsing, the

processing engine executes scripts to recover dynamically constructed links. The leak

quantification techniques are evaluated both in a controlled environment, and on real web

browsing data to demonstrate their effectiveness in isolating information in outbound web traffic.

1.4.4 Inferring Malicious Activity with a Whitelist

The methods and systems for analyzing web application behavior and information leaks

are only tools. They provide valuable feedback on the characteristics of network traffic, but do

not constitute a means for tagging such traffic as malicious or benign. After all, most malicious

software is no fundamentally different in its behavior than legitimate network applications. The

culmination of these network analysis techniques is a whitelist of allowed behavior that separates

the good traffic from the bad. All web requests that differ in formatting, timing, or unconstrained

bandwidth from a standard web browser are sent to the whitelist for final judgment. The whitelist

contains entries that specify the type of trigger (formatting, timing, bandwidth), the associated

application, and, optionally, the client(s), server(s), and times for which the entry is valid. Alerts

that do not match a known good application on the whitelist are considered malicious and flagged

for further investigation.

1.5 Thesis Organization

Chapter 2 surveys related security research. Chapter 3 covers the design and

implementation of the Storage Capsule security system. Chapter 4 describes methodology for

identifying web applications. Chapter 5 presents algorithms for precisely measuring information

content in outbound web traffic. Chapter 6 discusses techniques for inferring malicious activity

with the help of a whitelist. Chapter 7 talks about limitations of the security systems presented in

this thesis. Finally, Chapter 8 concludes and discusses future work.

www.manaraa.com

 9

CHAPTER 2

SURVEY OF RELATED WORK

2.1 Overview

Research that is related to this work can be divided into two main categories: host-based

security controls and network-based security systems. Host-based security controls covered in

this chapter include information flow control systems, virtual machine-based security systems,

and file encryption techniques. Network-based security systems can be subdivided into those that

control information flow to prevent security breaches, and those that try to detect suspicious

activity from compromised computers. Some intrusion detection systems run on the host, but

these systems have more in common with the network-based security systems presented in this

thesis, so they are discussed in that context. This survey of related work serves to position the

research in this thesis and highlight the state of the art in computer security as it applies to

protecting confidential digital information.

2.2 Host-Level Security Controls

2.2.1 Information Flow Control

There has been a great deal of research on controlling the flow of sensitive information

within a single computer. This research falls into two categories: inter-process flow control and

intra-process flow control. Inter-process flow control is concerned with how programs that access

sensitive information interact with one another. The primary example in this area is SELinux, a

security module that uses mandatory access control [NSA09] and can stop unwanted information

flows. Intra-process mechanisms focus on methods for writing and analyzing programs that one

can track sensitive data in individual variables. These tools can check, for example, if a program

could possibly leak one person’s password to another user.

www.manaraa.com

 10

Mandatory Access Control

Mandatory access control (MAC) involves enforcement of access control policies on

high-level objects (typically files, processes, etc.) in a computer system to fulfill security goals.

Some of the original MAC policies, such as the Biba integrity model [Biba75] and the Bell-

LaPadula secrecy model [Bell75], were fairly simple. They prevented flows of data from LOW

integrity to HIGH integrity and from HIGH secrecy to LOW secrecy. They achieved their

security goals, but unfortunately prevented most useful applications from working properly. A

more modern MAC system that is popular for high-security computers is SELinux [NSA09], a

component of the Linux kernel that is supported by the Linux Security Modules framework

[Wright02]. SELinux allows different MAC policy models, but an extended Type Enforcement

model [Boebert85] is the most widely-used for policy creation. The TE model is much more

flexible than both the Biba and Bell-LaPadula models, and is more conducive to practical

applications.

One of the main challenges in effectively deploying SELinux is configuring a policy set

that both guarantees security and allows applications run correctly. As Jaeger et al. point out

[Jaeger03], checking to see if applications can run is much easier than identifying security

vulnerabilities. Later work has looked at ways of automatically verifying integrity policies for

security-critical applications [Shankar06]. However, there are currently no general techniques for

easily specifying mandatory access control policies to secure arbitrary applications. Effective

mandatory access control is only practical for systems with well-defined application sets. MAC

would have a hard time protecting personal computers that download and install various

programs from the Internet. Most computers today do not employ mandatory access control, as

they run the Microsoft Windows operating system, which does not yet support MAC.

Static Flow Analysis

One significant limitation of MAC is the coarse granularity with which it enforces access

control policies. Tainting an entire process that has touched sensitive information makes it

impossible for mandatory access control to secure a program that manipulates data with different

confidentiality levels. Researchers have developed program-level flow control tools to provide

finer-grained taint tracking and deliver guaranteed security for a wider range of applications.

Denning et al. proposed the first mechanism for statically checking program information

flow properties [Denning77]. Their mechanism was more efficient than previous approaches that

involved dynamically monitoring information flow. However, their programming model requires

www.manaraa.com

 11

extensive manual annotation of variables with security classes, and would not allow many

applications to run without violating security constraints.

JFlow [Myers99] is a more modern program-level flow tracking language based on Java.

Jif [Myers01] is an implementation of a JFlow. JFlow differs from previous systems in that it

focuses on practical security for real programs. JFlow relies on static labeling with the

decentralized label model [Myers97] to specify security policies that protect sensitive information

within a computer program. These policies dictate the set of entities that may read each piece of

data. JFlow statically checks that operations in a program do not leak information in violation of

these policies. JFlow also allows declassification, whereby one entity can perform security checks

and remove labels from an object.

Even with some support for declassification, flow-tracking mechanisms that taint

variables derived from sensitive data are still too restrictive in some cases. Instead of completely

blocking flows from high secrecy to low secrecy principals, recent work by McCamant et al.

proposes quantitative flow tracking [McCamant08]. Traditional flow control tools mark each

piece of data with a sensitivity label. Anything derived from that label is also considered

sensitive. This approach tells you if a leak is possible, but not how much data can be leaked.

McCamant et al. treat information as an “incompressible liquid,” measuring the number of

sensitive bits that can flow from one variable to another at each operation in a program. The

output of their system facilitates fuzzy decision-making about whether to allow or fix information

leaks based on their size. This model can help in the design of any security-critical application,

even those for which flow control languages like JFlow would be impractical.

Although intra-program flow control systems help ensure that applications behave

securely, they suffer from a number of major limitations. First, the source code of the program in

question must be analyzed with the static checker, and sometimes requires annotations. This

makes static flow-control tools impractical for most legacy programs. Even more importantly,

however, static checkers do not help against malicious software or legitimate software that falls

under the control of an attacker at runtime. They are not designed to prevent malware from

reading sensitive information and leaking it to an external network. The systems presented in this

thesis use some of the same principles for analyzing the flow of sensitive information, but are

able to operate in an adversarial environment without assumptions about software integrity.

www.manaraa.com

 12

2.2.2 Benefits of Virtualization

Virtualization has become a popular technology for a wide variety of security systems.

Figure 2.1 shows the high-level architecture of a virtual machine system. The virtual machine

monitor (VMM) runs at the lowest layer and mediates hardware access for each virtual machine

(VM). Each VM in turn sees what looks like a dedicated hardware interface, but is actually going

through a virtual translation layer to reach the actual hardware. Virtual machine architectures

provide a number of benefits and abstractions that are unavailable in a traditional operating

system. Some of advantages of virtualization were originally outlined by Goldberg [Goldberg74].

Chen et al. [Chen01] more recently argue for the mass migration of several application classes,

some of which involve security, to a virtual machine architecture. These following properties of

virtualization make it an attractive technology for building security systems:

Isolation. Multiple virtual machines can run on the same hardware with a high degree of

isolation from one another. Each virtual machine has its own view of the disk, memory, and CPU

that other virtual machines cannot access. Like separate physical machines, VMs that need to

communicate with each other usually do so over a network interface, leading to approximately

the same level of isolation experienced by physical machines. The underlying virtual machine

monitor is also isolated from virtual machines to a much higher degree than a standard operating

system is from applications. This is because the VMM only provides a minimal set of interfaces

to multiplex memory and CPU for different virtual machines rather than a full set of system calls.

Robustness. The virtual machine monitor is much smaller than a standard operating

system, and thus has fewer parts that can break. The Xen VMM is implemented in under 50,000

Virtual Device Drivers

Guest OS

Physical Device Drivers

Hardware

Guest VMGuest VM

VMM

Figure 2.1. Architecture of a virtual machine system. One or more guest virtual machines rely on the
virtual machine monitor (VMM) to multiplex hardware resources for each VM. The VMM also

provides resource and fault isolation between the virtual machines.

www.manaraa.com

 13

lines of code [XenSource09], compared to 5.7 million lines for the Linux 2.6 production kernel,

and approximately 40 million for Windows XP [Delio04]. The VMM has only a few interfaces to

provide a minimal set of services for virtualization. It is considered much more reliable and

secure than a standard OS. Vulnerability reports reinforce this fact, showing only 9 security

vulnerabilities for Xen 3.x [Secunia09a], while showing 168 for the Linux 2.6.x Kernel

[Secunia09b].

Flexibility. Virtual machines running on the same host can have different operating

systems. This enables side-by-side execution of a high-security VM running SELinux [NSA09]

and a VM with a commodity OS running a computer game. The security and usability of the

entire physical machine is not constrained by the limitations of an individual operating system.

Visibility. Visibility goes hand in hand with isolation. Although security systems running

in the kernel of a standard operating system have a high degree of visibility as well, they are not

sufficiently isolated from security threats and can be disabled by attack code that is running in the

same protection domain. Virtualization allows the VMM or a trusted VM to fully view another

virtual machine’s disk, memory, and CPU state from an isolated location.

Control. Because the VMM sits between virtual machines and hardware, it can control

access by virtual machines to external devices and other VMs. This level of control for all

external communication by an isolated entity is unavailable for a traditional computer. The

closest mechanism is a network firewall. The VMM’s ability to control other devices, such as the

disk, the display, and human input, makes it a powerful tool for implementing security systems.

Management. One huge advantage of using virtual machines is the ability to easily save,

restore, and copy the state of an entire VM. This helps for resetting a VM to clean state if its

integrity has been compromised, or for creating a new virtual machine for a specific dangerous

task, such as opening a suspicious executable file.

Despite its numerous advantages, virtualization is not without its problems. Garfinkel et

al. warn that virtualization is not a completely free lunch, especially when it comes to security

[Garfinkel05]. The large number of saved machine states and rapid branching can make patching

and configuration much more challenging. Identifying and securing every virtual machine can be

an administrative nightmare in an environment with a large number of branches, checkpoints, and

different operating systems. The Capsule security system presented in this thesis does not suffer

from these limitations because it is designed to have only one primary virtual machine with a

fairly straight execution path. The only time that Capsule saves and restores VM state is when it

transitions to and from secure editing mode. These transitions are meant to be short term – a user

www.manaraa.com

 14

is unlikely to stay in secure editing mode for more than a few hours – and should have minimal

impact on patching and management for the primary virtual machine.

2.2.3 Virtualization-Based Security Systems

Logging and Replay

Many of the latest security systems rely on virtual machine technology. One popular

application of virtualization is secure logging and replay. ReVirt records long-term virtual

machine execution for later analysis [Dunlap02]. Backtracker builds upon the logging capabilities

of ReVirt to trace causality during the course of an intrusion and identify events that led up to the

current state of objects in a system [King05]. IntroVirt goes a step further and automatically

detects past and present exploitation of security holes by actively checking vulnerability

predicates [Joshi05]. All of these systems take advantage of the isolation provided by virtual

machines to log actions from the VMM where they are safe from attack by a compromised guest

operating system. The main purpose of VM-based logging and replay is analyzing intrusions into

a system with a greater level of visibility and isolation from attackers than was possible with

previous logging systems. In contrast, the work related to virtualization in this thesis does not

address the problem of intrusion detection or analysis. Capsule operates under the assumption that

the guest VM may be compromised, and seeks to provide confidentiality for sensitive information

on a potentially hostile virtual machine.

Malware Analysis

Virtual machines have become tool of choice for analyzing malicious software. Running

suspicious programs in a virtual machine and observing their behavior is much easier than using a

standard computer. An analyst can simply revert a VM to a previous state if it becomes infected

with a virus, while performing the same task without virtualization would entail reloading the

entire hard drive. VM-based malware analysis has become so popular that many malware

programs will check if they are running in a virtualized environment using a technique such as

Red Pill [Rutkowska05], and behave differently if they are. The Cobra malware analysis

framework provides a solution for efficiently examining malware in a manner that the program

under analysis cannot detect [Vasudevan06]. In addition to analyzing malware binaries, virtual

machines are also an effective means for deploying honeypot systems. Provos first introduced the

idea of a wide-scale “Virtual Honeypot Framework” that involved a single machine

masquerading as many computers to elicit network attacks [Provos04]. Although Provos did not

use virtual machines, later work on the Potemkin Virtual Honeyfarm shows how to quickly and

www.manaraa.com

 15

reliably spawn large numbers of virtual machines on one computer for the purpose of analyzing

attacks [Vrable05]. The work in this thesis is similar in that it assumes potential malware

infection on the primary virtual machine, but it does not try to analyze or characterize malicious

activity.

Trusted Computing

The Terra trusted computing platform [Garfinkel03a] exploits the flexibility of a virtual

machine architecture to run trusted code side-by-side with standard low-integrity code in a

separate virtual machine. Terra is based on the chain-of-trust principle for verifying critical

system components, similar to the approach taken by trusted boot [Sailer04]. During the boot

process, each successive system component verifies the cryptographic checksum of the next piece

of code with the help of a trusted platform module (TPM) [TCG06] for performing secure

cryptographic operations. This ensures system integrity at startup. Terra departs from trusted boot

when the virtual machine monitor gains control. Instead of verifying all guest virtual machines,

Terra only checks VMs that are considered high-integrity, while allowing low-security VMs to

run untrusted code.

Terra’s approach is similar to Storage Capsules in that it enables high-security

functionality on a computer that runs low-security code. One could configure Terra to have a

trusted virtual machine for editing encrypted sensitive documents that is verified at boot time.

Given that the software on this VM is free from security bugs, it would allow the user to create,

edit, and transfer some documents with guaranteed confidentiality. The problem comes when this

trusted VM wants to access low-integrity data. If the user creates a new file with the trusted

editing VM, then there are no issues. However, if a document includes information from external

sources, such as the Internet or e-mail, this data could compromise the trusted VM’s integrity and

cause it to leak information. This restriction makes an integrity-preserving approach using a

trusted VM computing platform less usable than Storage Capsules, which support editing from a

low-integrity system.

Introspection and Intrusion Detection

The isolation provided by virtual machines lends itself well to enhancing the security of

host-based intrusion detection systems (HIDS). Traditionally, HIDS had the advantage of greater

visibility into actions on the host, but were vulnerable to attack because they ran in the same

protection domain as malicious software. Garfinkel et al. recognized this shortcoming and

proposed a new architecture for HIDS that uses virtual machine introspection (VMI)

www.manaraa.com

 16

[garfinkel03c]. With VMI, the intrusion detection system runs beneath the virtual machine under

examination, and inspects its state to detect suspicious behavior. The catch is that a VMI

approach must reconstruct higher-level semantics from raw binary data using information about

the operating system. This is because high-level representations of objects such as files,

processes, and threads are unavailable from the perspective of the virtual machine monitor.

Capsule does not use virtual machine introspection to derive high-level information about

the state of low-integrity virtual machines. Instead, it uses a message-passing interface to

communicate with the primary VM, which operates under the assumption that any message

received from the VM is not trustworthy. Capsule’s other functionality that affects the primary

virtual machine, such as saving and restoring system state, does not require interpretation of high-

level objects in the VM.

2.2.4 Host-Level File Encryption

There are a number of security products available for encrypting and protecting files on a

local computer. Some compression utilities come with archive encryption capabilities [Roshal09,

Winzip09]. Another program called TrueCrypt can encrypt individual file stores, or entire

volumes [TrueCrypt09]. The advantage of TrueCrypt over archival compression utilities is that it

has better performance for random access. Microsoft Windows Vista also comes with full-drive

encryption technology known as BitLocker [Microsoft09]. These systems are descendents of the

original cryptographic file system for UNIX, which was the first to address performance and

security limitations of encryption utilities by moving encryption into the file system layer

[Blaze93].

File encryption is designed to protect against a few different threats. First, it allows one to

send a sensitive document or archive over an untrusted medium, such as the Internet. If the file is

encrypted, then only the intended recipient(s) who have the decryption key can view the data. The

primary purpose of whole-drive encryption is to protect data if the disk drive is stolen or lost.

Unfortunately, file encryption systems cannot safeguard sensitive information while it is

decrypted on the end host. The data must exist in plain text while the user is editing or viewing

documents. This is generally considered to be the weakest link for cryptographic file systems.

Their ability to protect confidential files from malicious software on the end host is very limited.

Capsule, on the other hand, uses file encryption but protects sensitive plain-text information from

eavesdropping on the end host.

www.manaraa.com

 17

2.3 Network-Level Security Controls

2.3.1 Threat Prevention

One class of network security systems helps protect both end host integrity and

confidentiality by preemptively blocking undesirable communication. Preventing two specific

entities from interacting with one another helps network threat prevention systems stop a large

portion of incoming attacks, as well as outbound information leaks. These security mechanisms

generally fall into two categories based on whether or not they examine application-layer data in

network connections. Network flow-control tools that only look at data below the application

layer include firewalls and content filters. Intrusion prevention systems (IPSs) and data loss

prevention (DLP) systems examine high-level information at the application layer. We also

discuss anti-virus software here, as it is shares many similarities with intrusion prevention

systems.

Security threat prevention is much better than passive detection when it is successful.

However, threat prevention systems are limited by the need to have an extremely low false

positive rate. Improperly blocking legitimate network traffic can be detrimental to productivity in

an organization. This forces prevention systems to be conservative in their traffic filtering, which

limits their ability to detect a wide range of attacks. Furthermore, having a prevention system in

place allows attackers to get active feedback about what is being blocked, and modify their

behavior to bypass security controls. Despite these limitations, threat prevention systems such as

firewalls serve as an effective first line of defense, immediately blocking a large number of

network attacks. The remainder of this section describes the operation of several network-based

threat prevention systems in greater detail.

Firewalls

Network firewalls govern the flow of packets in and out of computing systems. Standard

firewalls match packets based on their transport-layer protocol, source/destination addresses, and

source/destination port numbers. In this way, firewalls can protect vulnerable services from

remote exploitation by blocking the ports on which they receive packets. Firewalls can also block

outbound traffic on specific ports. This configuration is known as egress filtering. It can help

prevent unwanted applications from accessing the Internet. Coarse-grained filtering by firewalls

is effective because it completely blocks traffic that is disallowed by the firewall policy.

Unfortunately, firewalls provide zero protection for traffic that they allow. Firewalls do not help

secure services that must be accessed from outside the network. It is also easy for applications to

www.manaraa.com

 18

bypass egress filters by switching their communications to an allowed port for another program.

Firewalls are effective at filtering out a large portion of unwanted traffic, but can be easily

circumvented.

Content Filters

Content filters refer to the set of network flow control tools that prevent computers from

accessing undesirable web servers [OpenDNS09, Websense09]. Content filters focus more on the

destination server than the actual content of network traffic, but got their name because their

original purpose was blocking inappropriate web content. Modern content filters can be set up to

block many types of unwanted websites, or even allow traffic to only a limited set of trusted sites.

The goal of content filters is often to restrict users from accessing websites that impede their

productivity or threaten their security. However, content filters can also serve to protect

confidentiality by cutting off avenues for information leakage. They may block servers that

collect stolen data from spyware programs, or stop malicious insiders from sending out

confidential documents through web mail. One drawback of content filters is that they may limit

the productivity of users who need access to a broad range of sites for their work.

Though they provide some security benefits, content filters are not able to stop

sophisticated adversaries from leaking information. This is because an attacker can transmit data

through any web server that accepts a post and will display that information to other computers.

This includes any site with a message board, forum, wiki, or other collaborative interface.

Identifying and blocking all such websites would be extremely. Sites that accept posts represent a

large portion of the web, including many useful websites like www.wikipedia.org. Even if current

content filters were able to identify all sites that accept posts, blocking them would have a severe

impact on usability. Content filters are an inadequate tool for controlling the flow of confidential

information.

Intrusion Prevention Systems

The goal of intrusion prevention systems (IPSs) [IBM09b, TippingPoint09] is to identify

and block malicious network traffic. This includes attacks from worms, bots, and hackers. IPSs

will use a blacklist of known bad traffic to detect attack traffic. IPSs are very similar to some

intrusion detection systems, which also use a blacklist to detect bad traffic but do not actively

block malicious activity. From an information flow-control perspective, IPSs only serve to

prevent the flow of malicious data into a network; they do not stop information leaks. Like all

systems that rely on a blacklist, they are also unable to block new and unknown attacks.

www.manaraa.com

 19

Anti-Virus Software

Although anti-virus (AV) software [McAfee09, Symantec09] typically runs on the end

host, the way that it detects and blocks malicious software is very similar to a network intrusion

prevention system. Some AV software actually comes with an active protection component that

scans incoming network traffic for attacks, similar to an intrusion prevention system. The main

limitation of anti-virus programs is that they rely on a blacklist to detect malware. This prevents

them from detecting new malware payloads, which are very easy to build from the perspective of

an attacker. One can create malware with a new signature by simply changing a few unimportant

pieces of functionality and recompiling the program. Furthermore, hackers have access to anti-

virus signatures and can test to make sure that their new malware goes undetected. Anti-virus

software is quite effective against viruses and other malicious programs that have a wide

distribution, but does not provide protection against more sophisticated attacks.

Data Loss Prevention Systems

The purpose of data loss prevention (DLP) systems [RSA07, Vontu09] is to inspect

outgoing network traffic for the presence confidential information. If a DLP system detects

sensitive data, it can the block the stream or log an alert for further auditing. Like IPSs, data loss

prevention systems look at the payloads of network connections to decide whether they should be

blocked. Unfortunately, this only consists of checking for known confidential information, which

prevents DLP systems from being able to detect encrypted or obfuscated information leaks. The

principles of data hiding and steganography show that it is nearly impossible, in the general case,

to determine with certainty whether some data contains a hidden message [Petitcolas99]. In

practice, DLP systems are helpful for stopping accidental leaks, but have no way of protecting

against a malicious insider who understands encryption or data hiding.

2.3.2 Intrusion Detection

A large portion of security research focuses on the problem of detecting malicious

activity by looking at network traffic or host-level actions. Systems that process this activity and

identify suspicious behavior are known as intrusion detection systems (IDSs). There are two

families of intrusion detection systems: those that rely on signatures, and those that detect

behavioral anomalies. Signature-based IDSs benefit from a low false positive rate. It is also easy

for an analyst to respond to alerts because they are associated with known attacks. Unfortunately,

signature-based IDSs cannot detect new or unknown threats, making them ineffective against

most targeted attacks. Behavioral anomaly detection systems are better at responding to unknown

www.manaraa.com

 20

threats because they use models to characterize suspicious activity. However, anomaly detection

systems are still vulnerable to evasion by attackers that mimic legitimate activity. They are also

more prone to false positives than signature-based systems because they look for suspicious

patterns rather than precisely known attacks. This makes it harder for administrators to respond to

alerts as well, because less information is known to a behavioral anomaly detection system about

the nature of attacks.

The network traffic analysis techniques in this thesis fall into the category of anomaly-

based intrusion detection systems. They differ from previous approaches, however, due to the use

of a whitelist to filter out alerts and reduce false positives. In this way, there are similarities with

systems that use a blacklist of signatures to identify attacks. This section describes a number of

intrusion detection systems in detail, and compares them to the systems presented in this thesis.

Network-Based Signature Detection

The most common type of system that people think of when they hear intrusion detection

is a network-based signature detection system. Classic signature-based NIDSs have a repository

of signatures for known network attacks. They check traffic in real time against these attack

signatures, and raise alerts for matching streams. An administrator then views and responds to the

alerts, which may indicate that a system has been compromised by a hacker. Examples of

traditional signature-based NIDSs include Snort [Roesch99], Bro [Paxson98], and ISS

RealSecure [IBM09a]. Some signature-based NIDSs, such as Peakflow X [Arbor09], look for

malware attack patterns based on sequences of network connections rather than string matching

on individual packets. These systems have the benefits mentioned earlier of straightforward

attack remediation and low false positive rates.

Some signature-based NIDSs, however, are vulnerable to evasion by changing attack

patterns, as demonstrated by Vigna et al. [Vigna04]. More recent research tries to address this

limitation by creating vulnerability-specific signatures that are impossible to evade (while still

exploiting the same vulnerability) [Brumley06, Newsome05b]. Even if foolproof signatures are in

place, NIDSs are vulnerable to new and unknown attacks. This includes attacks by malicious

insiders, which are a serious threat and generally do not have a signature. As the volume of

malicious software and security vulnerabilities continues to increase, even keeping up with

signatures for publicly known attacks is a difficult task. Signature-based NIDSs simply do not

provide complete protection against network security threats.

www.manaraa.com

 21

Network-Based Anomaly Detection

Many researchers have made the observation that malicious network traffic exhibits

different patterns than legitimate network traffic. Several systems attempt to characterize

malicious traffic of different types. Originally, network-based anomaly detection (NBAD)

systems primarily used connection statistics to discover suspicious communication patterns

between computers [Mukherjee94]. This approach was successful at detecting many attacks

without the help of signatures. However, since the creation of NBAD systems, the model for

network interaction has changed significantly. Now, most client computers block all incoming

traffic with a firewall by default, only allowing client/server communication. This has forced

hackers to adopt the client/server model for exploiting computers as well. Modern network

attacks are often delivered through e-mail or a malicious website rather than direct inbound

connections. Traditional statistical anomaly detection techniques that look at low-level

connection information have a difficult time detecting these types of threats because they are hard

to differentiate from legitimate e-mail or web browsing.

More modern NBAD systems focus on network traffic payloads. Kruegel et al.

demonstrate how to detect anomalies by measuring service-specific payload statistics (e.g.

specific to web browsing, e-mail, etc.) related to the type of request, request length, and payload

byte distribution [Kruegel02]. Wang et al. improve upon these techniques by using a more fine-

grained byte distribution analysis [Wang04]. These systems were successful at detecting a large

portion of new network attacks from the DARPA intrusion detection data set. However, NBAD

systems that focus on payload statistics are inherently vulnerable to mimicry attacks. If a hacker

knows about payload statistics that are in use for anomaly detection, he or she can adjust

malicious traffic to fit within the set of normal activity. Another shortcoming of statistical

payload analysis is that it does not catch attacks that occur by way of legitimate protocol usage.

For example, if spyware uploads sensitive passwords to a rogue web server using normal HTTP

requests, this traffic will look exactly the same, from a statistical perspective, as legitimate log-in

requests.

Some NBAD systems look for executable shell code in traffic payloads

[Polychronakis06]. The presence of shell code indicates a buffer overflow exploitation attempt.

These systems can effectively block such attacks. However, buffer overflow exploits represent

only a small portion of unwanted network traffic. Many attacks involve tricking users into

downloading full programs or plug-ins that compromise their computers rather than exploiting a

buffer overflow. Furthermore, once a machine has become infected, it is unlikely to generate

buffer overflow payloads, unless it is actively attacking another computer. Spyware or malicious

www.manaraa.com

 22

insiders that try to leak sensitive information will not be detected by an NBAD system that looks

for executable shell code.

One more recent NBAD system, BotMiner, departs from payload analysis and instead

detects malware by correlating network behavior [Gu08]. BotMiner’s goal is to detect a specific

type of malicious software, known as a bot, which controls a computer to do the bidding of

central bot master, who has compromised numerous machines with the bot software. BotMiner

takes advantage of the fact that more than one computer will be infected with the same bot in

most cases, and these computers will exhibit the same malicious behavior. While certain

activities, such as scanning or communicating over internet relay chat (IRC) with an unknown

server, are uncommon but not malicious by themselves, the occurrence of such behavior from

multiple computers in the same network is highly indicative of a bot compromise. Unfortunately,

BotMiner cannot detect spyware that only sends confidential information to a rogue web server,

as its requests do not constitute anomalous behavior that can be correlated across multiple

infected machines. BotMiner is also limited by the fact that it can only identify malicious activity

if more than one computer is compromised. For targeted attacks, a hacker could avoid

correlation-based detection by only infecting one computer with a particular type of malware.

Host-Based Anomaly Detection

Although they operate on an individual computer, host-based intrusion detection systems

(HIDS) share some commonalities with the network threat detection systems in this thesis. The

main difference between HIDS and NIDS is that HIDS have access to a myriad of local

information that cannot be seen over the network. They can view anything at all on a computer,

including program execution, system calls, and device I/O. System calls are a particularly popular

target of analysis, as they are the bridge between compromised applications and the underlying

system. Hofmeyr et al. describe an intrusion detection system that discovers malicious behavior

by looking for sequences of system calls that were previously unseen for a particular application

[Hofmeyr98]. The insight behind their approach is that programs tend to behave differently when

they have become compromised. One limitation of system call HIDS is that they require

extensive calibration to determine the set of allowable system call behavior. Performing such

calibration would be impractical for personal computers that frequently install new software.

Furthermore, training data must be collected during a period in which the program in behaving

legitimately. System call HIDS cannot protect against the installation of programs packaged with

Trojan horse malware because they would behave maliciously during the training. System call

HIDS can detect a wide variety of attacks, but by no means provide complete host-level

www.manaraa.com

 23

protection. They serve as an important influence for the work in this thesis, however, because

system call HIDS are an early example of using whitelists for intrusion detection.

Tripwire is an early host-based IDS that looks for modifications to critical system files as

an indicator of malicious behavior [Kim94]. Tripwire is very similar, in fact, to work on trusted

computing that checks the integrity of all critical files at boot time. Tripwire will sit and wait for

changes to important files, and then notify a system administrator when they occur. This can help

detect the installation of persistent root kit programs, or modifications to the system

configuration, such as changing the password file, that grant the attacker permanent access to the

target machine. Tripwire is only useful against some attacks. If a hacker infects a machine and

uses it for nefarious network activity without modifying any files, then it would be impossible for

Tripwire to detect the compromise. Tripwire is also vulnerable to malicious software with

elevated privileges that modifies the file system at a layer below Tripwire’s detection hooks.

However, this vulnerability could be fixed by updating tripwire to use virtual machine technology

and run below the virtual machine in question. Tripwire is largely orthogonal to work in this

thesis because it only examines events that indicate a change in system configuration on the local

host, rather than looking for breaches of confidentiality.

www.manaraa.com

 24

CHAPTER 3

PROTECTING CONFIDENTIAL DATA ON PERSONAL
COMPUTERS WITH STORAGE CAPSULES

3.1 Introduction

Traditional methods for protecting confidential information rely on upholding system

integrity. If a computer is safe from hackers and malicious software (malware), then so is its data.

Ensuring integrity in today’s interconnected world, however, is exceedingly difficult. Trusted

computing platforms such as Terra [Garfinkel03a] and trusted boot [Sailer04] try to provide this

integrity by verifying software. Unfortunately, these platforms are rarely deployed in practice and

most software continues to be unverified. More widely-applicable security tools, such as

firewalls, intrusion detection systems, and anti-virus software, have been unable to combat

malware, with 100 to 150 million infected machines running on the Internet today according to a

recent estimate [Weber07]. Security mechanisms for personal computers simply cannot rely on

keeping high integrity. Storage Capsules address the need for access to confidential data from

compromised personal computers.

Some existing solutions for preserving confidentiality do not rely on high integrity. One

example is mandatory access control (MAC) with multi-level security (MLS) and policies that

abide by the Bell-LaPadula secrecy model [Bell75]. With these policies, MAC can prevent

entities that read confidential information from communicating over the network. This policy set

achieves the goal of preventing leaks in the presence of malware. However, defining policies that

are both correct and allow normal programs to run can be difficult. Even if programs can run,

their utility may be severely limited. For example, documents saved by a word processor that has

ever read secret data could not be sent as e-mail attachments. Another embodiment of the same

principle can be seen in an “air gap” separated network where computers are physically

disconnected from the outside world. Unplugging a compromised computer from the Internet will

stop it from leaking information, but doing so greatly limits its utility. Both mandatory access

www.manaraa.com

 25

control with strict outbound flow policies and air gap networks are rarely used outside of

protecting classified information due to their severe impact on usability.

This chapter introduces Storage Capsules, a new mechanism for protecting sensitive

information on a local computer. The goal of Storage Capsules is to deliver a comparable level of

security as a mandatory access control system, but for standard applications running on a

commodity operating system. Storage Capsules meet this requirement by enforcing policies at a

system-wide level using virtual machines. The user’s system can also downgrade from high-

secrecy to low-secrecy by reverting to a prior state using virtual machine snapshots. Finally, the

system can obtain updated Storage Capsules from a declassification component, which makes

sensitive data available at a lower secrecy level by encrypting it with a secret key.

Storage Capsules are analogous to encrypted file containers from the user’s perspective.

When the user opens a Storage Capsule, a snapshot is taken of the current system state and device

output is disabled. At this point, the system is considered to be in secure mode. When the user is

finished editing files in a Storage Capsule, the system is reverted to its original state – discarding

all changes except those made to the Storage Capsule – and device output is re-enabled. The

storage capsule is finally re-encrypted by a trusted component.

Storage Capsules guarantee protection against a compromised operating system or

applications. Sensitive files are safe when they are encrypted and when being accessed by the

user in plain text. The Capsule system prevents the OS from leaking information by erasing the

OS’s entire state after it sees sensitive data. It also stops covert communication by fixing the

Storage Capsule size and completely re-encrypting the cipher-text every time it is accessed by the

OS outside of secure mode. Our threat model assumes that the primary operating system can do

anything at all to undermine the system. The threat model also assumes that the user, hardware,

the virtual machine monitor (VMM), and an isolated secure virtual machine are trustworthy. The

Capsule system protects against covert channels in the primary OS and Storage Capsules, as well

as many (though not all) covert channels at lower layers (disk, CPU, etc.). One of the

contributions of this thesis is identifying and suggesting mitigation strategies for numerous covert

channels that could potentially leak data from a high-secrecy VM to a low-secrecy VM that runs

after it has terminated.

We evaluated the impact that Storage Capsules have on the user’s workflow by

measuring the latency of security level transitions and system performance during secure mode.

We found that for a primary operating system with 512 MB of RAM, transitions to secure mode

took about 4.5 seconds, while transitions out of secure mode took approximately 20 seconds. We

also compared the performance of the Apache build benchmark in secure mode to that of a native

www.manaraa.com

 26

machine, a plain virtual machine, and a virtual machine running an encryption utility. Overall,

Storage Capsules added 38% overhead compared to a native machine, and only 5% compared to a

VM with encryption software. The typical workload for a Storage Capsule is expected to be much

lighter than an Apache build. In many cases, it will add only a negligible overhead.

The remainder of this chapter is laid out as follows. Section 3.2 gives an overview of the

usage model, the threat model, and design alternatives. Section 3.3 outlines the system

architecture. Section 3.4 describes the operation of Storage Capsules. Section 3.5 examines the

effect of covert channels on Storage Capsules. Section 3.6 presents evaluation results. Finally,

section 3.7 concludes and discusses future work.

3.2 Overview

3.2.1 Storage Capsules from a User’s Perspective

From the user’s perspective, Storage Capsules are analogous to encrypted file containers

provided by a program like TrueCrypt [TrueCrypt09]. Basing the Capsule system off of an

existing and popular program’s usage model makes it easier to gain acceptance. The primary

difference between Storage Capsules and traditional encryption software is that the system enters

a secure mode before opening the Storage Capsule’s contents. In this secure mode, network

output is disabled and any changes that the user makes outside of the Storage Capsule will be lost.

The user may still edit the Storage Capsule contents with his or her standard applications. When

the user closes the Storage Capsule and exits secure mode, the system reverts to the state it was in

before accessing sensitive data.

One motivating example for Storage Capsules is protecting financial information. A

person, call him Bob, might have a spreadsheet that contains bank account numbers, his social

security number, tax information, etc. Bob wants to be able to download monthly statements from

his bank and copy information into the spreadsheet. However, Bob is worried about spyware

stealing the data because it could lead to identity theft. Being a diligent computer user, Bob stores

the spreadsheet in an encrypted file container. Every month, Bob downloads his financial

statement, opens up the container, and updates the spreadsheet. Unfortunately, Bob is still

completely vulnerable to spyware when he enters the decryption password and edits the

spreadsheet. Storage Capsules support the same usage model as normal encrypted file containers,

but also deliver protection against spyware while the user is accessing sensitive data.

Storage Capsules have some limitations compared to encrypted file containers. These

limitations are necessary to gain additional security. First, changes that the user makes outside of

the encrypted Storage Capsule while it is open will not persist. This benefits security and privacy

www.manaraa.com

 27

by eliminating all traces of activity while the container was open. Storage Capsules guarantee that

the OS does not inadvertently hold information about sensitive files, such as described by Czeskis

et al. for the case of TrueCrypt [Czeskis08]. Unfortunately, any work from computational or

network processes that may be running in the background will be lost. One way to remove this

limitation would be to fork the primary virtual machine and allow a copy of it to run in the

background. Allowing low- and high-secrecy VMs to run at the same time, however, reduces

security by opening up the door for a variety of covert channels.

3.2.2 Threat Model

Storage Capsules are designed to allow a compromised operating system to safely edit

confidential information. However, some trusted components are necessary to provide security.

Figure 3.1 shows the architecture of the Capsule system, with trusted components having solid

lines and untrusted components having dotted lines. The user’s primary operating system runs

inside of a primary VM. The applications, the drivers, and the operating system are not trusted in

the primary VM; it can behave in any arbitrary manner. A virtual machine monitor (VMM) runs

beneath the primary VM, and is responsible for mediating access to physical devices. The VMM

is considered part of the trusted computing base (TCB). The Capsule system also relies on a

Secure VM to save changes and re-encrypt Storage Capsules. This secure VM has only a minimal

set of applications to service Storage Capsule requests, and has all other services blocked off with

a firewall. The secure VM is also part of the TCB.

The user is also considered trustworthy in his or her intent. Presumably, the user has a

password to decrypt each Storage Capsule and could do so using rogue software without going

Virtual Device
Drivers

Primary OS

Physical Device Drivers

Hardware

Primary VM

VMM

Virtual Device
Drivers

OS

Secure VM

Figure 3.1. In the Storage Capsule system architecture, the user’s primary operating system runs in a

virtual machine. The secure VM handles encryption and declassification. The dotted black line
surrounding the primary VM indicates that it is not trusted. The other system components are trusted.

www.manaraa.com

 28

into secure mode and leak sensitive data. The user does not require full access to any trusted

components, however. The main user interface is the primary VM, and the user should only

interact with the Secure VM or VMM briefly using a limited UI. This prevents the user from

inadvertently compromising a trusted component with bad input.

The threat model assumes that malicious software may try to communicate covertly

within the primary VM. Storage Capsules are designed to prevent a compromised primary OS

from saving data anywhere that will persist through a snapshot restoration. However, Storage

Capsules do not guarantee that a malicious primary VM cannot store data somewhere in a trusted

component, such as hardware or the VMM, in such a way that it can recover information after

leaving secure mode. We discuss several of these covert channels in more depth later in the

chapter.

3.2.3 Designs that do not Satisfy Storage Capsule Goals

The first system design that would not meet the security goals laid out in our threat model

is conventional file encryption software [Blaze93, Fruhwirth09, Microsoft09, TrueCrypt09]. Any

information stored in an encrypted file would be safe from malicious software, or even a

compromised operating system, while it is encrypted. However, as soon as the user decrypts a

file, the operating system can do whatever it wants with the decrypted data.

The Terra system [Garfinkel03a] provides multiple security levels for virtual machines

using trusted computing technology. Terra verifies each system component at startup using a

trusted platform model (TPM) [TCG06], similar to trusted boot [Sailer04]. However, Terra

allows unverified code to run in low-security virtual machines. One could imagine a

configuration of Terra in which the user’s primary OS runs inside of a low-integrity machine, just

like in the Capsule system. The user could have a separate secure VM for decrypting, editing, and

encrypting files. Assuming that the secure VM always has high integrity, this approach would

provide comparable security and usability benefits to Storage Capsules. However, Terra only

ensures a secure VM’s integrity at startup; it does not protect running software from exploitation.

If this secure VM ever loads an encrypted file from an untrusted location, it is exposed to attack.

All sources of sensitive data (e-mail contacts, web servers, etc.) would have to be verified and

added to the trusted computing base (TCB), bloating its size and impacting both management

overhead and security. Furthermore, the user would be unable to safely include data from

untrusted sources, such as the Internet, in sensitive files. The Capsule system imposes no such

headaches; it can include low-integrity data in protected files, and only requires trust in local

system components to guarantee confidentiality.

www.manaraa.com

 29

Another design that would not meet the goals of Storage Capsules is the NetTop

architecture [Meushaw00]. With NetTop, a user has virtual machines with multiple security

levels. One is for accessing high-secrecy information, and another for low-secrecy information,

which may be connected to the Internet. Depending on how policies are defined, NetTop either

suffers from usability limitations or would have security problems. First assume that the high-

secrecy VM must be able to read data from the low-secrecy VM to load files from external

locations that are not part of the trusted computing base. Now, if the high-secrecy VM is

prevented from writing anything back to the low-secrecy VM, then confidentiality is maintained.

However, this prevents the user from making changes to a sensitive document, encrypting it, then

sending it back out over a low-secrecy medium. This effectively makes everything read-only

from the high-secrecy VM to the low-secrecy VM. The other alternative – letting the high-

secrecy VM encrypt and de-classify data – opens up a major security hole. Data that comes from

the low-secrecy VM also might be malicious in nature. If the high-secrecy VM reads that

information, its integrity – and the integrity of its encryption operations – may be compromised.

3.3 System Architecture

The Capsule system has two primary modes of operation: normal mode and secure mode.

In normal mode, the computer behaves the same as it would without the Capsule system. The

primary operating system has access to all devices and can communicate freely over the network.

In secure mode, the primary OS is blocked from sending output to the external network or to

devices that can store data. Furthermore, the primary operating system’s state is saved prior to

entering secure mode, and then restored when transitioning back to normal mode. This prevents

malicious software running on the primary OS from leaking data from secure mode to normal

mode.

The Capsule system utilizes virtual machine technology to isolate the primary OS in

secure mode. Virtual machines also make it easy to save and restore system state when

transitioning to or from secure mode. Figure 3.1 illustrates the architecture of the Capsule system.

The first virtual machine, labeled Primary VM, contains the primary operating system. This VM

is the equivalent of the user’s original computer. It contains all of the user’s applications, settings,

and documents. This virtual machine may be infected with malicious software and is not

considered trustworthy. The other virtual machine, labeled Secure VM, is responsible for

managing access to Storage Capsules. The secure VM is trusted. The final component of the

Capsule system shown in Figure 3.1 is the Virtual Machine Monitor (VMM). The VMM is

www.manaraa.com

 30

responsible for translating each virtual device I/O request into a physical device request, and for

governing virtual networks. As such, it can also block device I/O from virtual machines. The

VMM has the power to start, stop, save, and restore entire virtual machines. Because it has full

control of the computer, the VMM is part of the trusted computing base.

The Capsule system adds three components to the above architecture to facilitate secure

access to Storage Capsules. The first is the Capsule VMM module, which runs as service inside of

the VMM. The Capsule VMM module performs the following basic functions:

• Saves and restores snapshots of the primary VM

• Enables and disables device access by the primary VM

• Catches key escape sequences from the user

• Switches the UI between the primary VM and the secure VM

The Capsule VMM module executes operations as requested by the second component,

the Capsule server, which runs inside of the secure VM. The Capsule server manages transitions

between normal mode and secure mode. During secure mode, it also acts as a disk server,

handling block-level read and write requests from the Capsule viewer, which runs in the primary

VM. The Capsule server has dedicated interfaces for communicating with the Capsule viewer and

with the Capsule VMM module. These interfaces are attached to separate virtual networks so that

the viewer and VMM module cannot impersonate or communicate directly with each other.

The third component, the Capsule viewer, is an application that accesses Storage

Capsules on the primary VM. When the user first loads or creates a new Storage Capsule, the

viewer will import the file by sending it to the Capsule server. The user can subsequently open

the Storage Capsule, at which point the viewer will ask the Capsule server to transition the system

to secure mode. During secure mode, the viewer presents the contents of the Storage Capsule to

the user as a new mounted partition. Block-level read and write requests made by the file system

are forwarded by the viewer to the Capsule server, which encrypts and saves changes to the

Storage Capsule. Finally, the Capsule viewer can retrieve the encrypted Storage Capsule by

requesting an export from the Capsule server. The Capsule viewer is not trusted and may cause a

denial-of-service at any time. However, the Capsule system is designed to prevent even a

compromised viewer from leaking data from secure mode to normal mode.

www.manaraa.com

 31

3.4 Storage Capsule Operation

3.4.1 Storage Capsule File Format

A Storage Capsule is actually an encrypted partition that is mounted during secure mode.

The Storage Capsule model is based on TrueCrypt [TrueCrypt09] – a popular encrypted storage

program. Like TrueCrypt, each new Storage Capsule is created with a fixed size. Storage

Capsules employ XTS-AES – the same encryption scheme as TrueCrypt – which is the IEEE

standard for data encryption [IEEE08]. In our implementation, the encryption key for each file is

created by taking the SHA-512 hash of a user-supplied password. In a production system, it

would be beneficial to employ other methods, such as hashing the password many times and

adding a salt, to make attacks more difficult. The key could also come from a biometric reader

(fingerprint reader, retina scanner, etc.), or be stored on a key storage device like a smart card.

Storage Capsules operation does not depend on a particular key source.

With XTS-AES, a different tweak value is used during encryption for each data unit. A

data unit can be one or more AES blocks. The Storage Capsule implementation uses a single AES

block for each data unit. In accordance with the IEEE 1619 standard [IEEE08], Storage Capsules

use a random 128-bit starting tweak value that is incremented for each data unit. This starting

tweak value is needed for decryption, so it is stored at the beginning of the file. Because

knowledge of the tweak value does not weaken the encryption [Liskov02], it is stored in the clear.

3.4.2 Creating and Importing a Storage Capsule

The first step in securing data is creating a new Storage Capsule. The following tasks take

place during the creation process:

1. The Capsule viewer solicits a Storage Capsule file name and size from the user.

2. The viewer makes a request to the Capsule server on the secure VM to create a new Storage

Capsule.

3. The viewer asks the user to enter the secure key escape sequence that will be caught by a

keyboard filter driver in the VMM. This deters spoofing by a compromised primary VM.

4. After receiving the escape sequence, the VMM module will give the secure VM control of

the user interface.

a. If the escape sequence is received unexpectedly (i.e. when the VMM has not received

a request to wait for an escape sequence from the Capsule server), then the VMM

module will still give control of the UI to the secure VM, but the secure VM will

www.manaraa.com

 32

display a warning message saying that the user is not at a secure password entry

page.

5. The Capsule server will ask the user to select a password, choose a random starting tweak

value for encryption, and then format the encapsulated partition.

6. The Capsule server asks the VMM module to switch UI focus back to the primary VM.

7. After the creation process is complete, the Capsule server will send the viewer a file ID that

it can store locally to link to the Storage Capsule on the server.

Loading a Storage Capsule from an external location requires fewer steps than creating a

new Storage Capsule. If the viewer opens a Storage Capsule file that has been created elsewhere,

it imports the file by sending it to the Capsule server. In exchange, the Capsule server sends the

viewer a file ID that it can use as a link to the newly imported Storage Capsule. After a Storage

Capsule has been loaded, the link on the primary VM looks the same regardless of whether the

Capsule was created locally or imported from an external location.

3.4.3 Opening a Storage Capsule in Secure Mode

At this point, one or more Storage Capsules reside on the Capsule server, and have links

to them on the primary VM. When the user opens a link with the Capsule viewer, it will begin the

transition to secure mode, which consists of the following steps:

1. The Capsule viewer sends the Capsule server a message saying that the user wants to open

a Storage Capsule, which includes the file ID from the link in the primary VM.

2. The Capsule viewer asks the user to enter the escape sequence that will be caught by the

VMM module.

3. The VMM module receives the escape sequence and switches the UI focus to the secure

VM. This prevents malware on the primary VM from spoofing a transition and stealing the

file password.

a. If the escape sequence is received unexpectedly, the secure VM still receives UI

focus, but displays a warning message stating the system is not in secure mode.

4. The VMM module begins saving a snapshot of the primary VM in the background.

Execution continues, but memory and disk data is copied to the snapshot file if it is written.

5. The VMM module disables network and other device output.

6. The Capsule server obtains the file password from the user.

7. The VMM module returns UI focus to the primary VM.

8. The Capsule server tells the viewer that the transition is complete and begins servicing disk

I/O requests to the Storage Capsule.

www.manaraa.com

 33

9. The Capsule viewer mounts a local partition that uses the Capsule server for back-end disk

block storage.

The above process ensures that the primary VM gains access to the Storage Capsule

contents only after its initial state has been saved and the VMM has blocked device output. The

exact set of devices blocked during secure mode is discussed more in the section on covert

channels.

Depending on the source of the Storage Capsule encryption key, step 6 could be

eliminated entirely. If the key was obtained from a smart card or other device, then the primary

VM would retain UI focus throughout the entire transition, except in the case of an unexpected

escape sequence from the user. In this case, the secure VM must always take over the screen and

warn the user that he or she is not in secure mode.

3.4.4 Storage Capsule Access in Secure Mode

When the Capsule system is running in secure mode, all reads and writes to the Storage

Capsule are sent to the Capsule server. The server will encrypt and decrypt the data for each

request as it is received, without performing any caching itself. The Capsule server instead relies

on the caches within the primary VM and its own operating system to minimize unnecessary

encryption and disk I/O. The disk cache in the primary VM sits above the driver that sends

requests through to the Capsule server. On the secure VM, disk read and disk write requests from

the Capsule server go through the local file system cache before they are sent to the disk. Later,

we measure Storage Capsule disk performance during secure mode and demonstrate that is

comparable to current encryption and virtualization software.

During secure mode, the VMM stores all writes to the primary VM’s virtual disk in a file.

This file contains differences with respect to the disk state at the time of the last snapshot

operation (during the transition to secure mode). In the Capsule system, this difference file is

stored on a partition that resides in main memory, commonly referred to as a RAM disk. Our

implementation uses the ImDisk Virtual Disk Driver [Lagerkvist08]. Storing the files on a RAM

disk prevents potentially sensitive data that the primary VM writes to its virtual disk from

reaching the physical disk. Although malicious access to the physical disk is not the focus of this

chapter’s threat model, allowing confidential data to touch the disk increases the overall risk of

leakage and the cost of hardware destruction.

The main downside to storing virtual disk modifications in memory is that the system

requires more memory in secure mode. However, the size of primary disk modifications in secure

mode should be small under normal circumstances because they are all temporary. Under normal

www.manaraa.com

 34

circumstances, the user has no reason to store big files in a location where they will soon be

deleted. If the change buffer does fill up due to a denial-of-service by malware or non-standard

usage, then writes to the main virtual disk will fail until the system reverts to normal mode. If

there turns out to be a legitimate need for large amounts of temporary storage in secure mode,

then the change buffer could be stored on the physical disk and the VMM could use an encrypted

file system for added protection.

3.4.5 Reverting to Normal Mode

Transitioning the Capsule system from secure mode back to normal mode is the most

security-sensitive operation. Care must be taken to prevent leaks from secure mode back to

normal mode insofar as practical for the desired level of security. A full discussion of the

channels through which information might flow during this transition and countermeasures can be

found in the next section. The Capsule system begins reverting to normal mode when the user

enters a key escape sequence. Here, the escape sequence is not to prevent spoofing, but instead to

reduce the primary VM’s ability to leak data through a timing channel. After the user hits the

escape sequence, the following steps take place:

1. The VMM module notifies the Capsule server of the pending transition, which in turn

notifies the Capsule viewer.

2. The Capsule server waits up to 30 seconds for the primary VM to flush disk writes to the

Storage Capsule. In our experiments, flushing always took less than one second, but

uncommon workloads could make it take longer. We chose 30 seconds because it is the

default maximum write-back delay for Linux.

3. The secure VM reboots in order to flush any state that was affected by the primary VM.

(This blocks some covert channels that are discussed in the next section.)

4. The VMM module halts the primary VM, and then reverts its state to the snapshot taken

before entering secure mode and resumes execution.

5. The VMM module re-enables network and other device output for the primary VM.

After the Capsule system has reverted to normal mode, all changes that were made in the

primary VM during secure mode, except those to the Storage Capsule, are lost. Also, when the

Capsule viewer resumes executing in normal mode, it queries the Capsule to see what mode it is

in (if the connection fails due to the reboot, normal mode is assumed). This is a similar

mechanism to the return value from a fork operation. Without it, the Capsule viewer cannot tell

whether secure mode is just beginning or the system has just reverted to normal mode, because

both modes start from the same state.

www.manaraa.com

 35

3.4.6 Exporting Storage Capsules

After modifying a storage capsule, the user will probably want to back it up or transfer it

to another location at some point. Storage Capsules support this use case by providing an export

operation. The Capsule viewer may request an export from the Capsule server at any time during

normal mode. When the Capsule server exports an encrypted Storage Capsule back to the primary

VM, it is essential that malicious software cannot glean any information from the differences

between the Storage Capsule at the time of export and at the original time of import. This should

be the case even if malware has full control of the primary VM during secure mode and can

manipulate the Storage Capsule contents in a chosen-plaintext attack.

For the Storage Capsule encryption scheme to be secure, the difference between the

exported cipher-text and the original imported cipher-text must appear completely random. If the

primary VM can change specific parts of the exported Storage Capsule, then it could leak data

from secure mode. To combat this attack, the Capsule server re-encrypts the entire Storage

Capsule using a new random 128-bit starting tweak value before each export. There is a small

chance of two exports colliding. For any two Storage Capsules, each of size 2 GB (227 encryption

blocks), the chance of random 128-bit tweak values partially colliding would be approximately 1

in 2 * 227 / 2128 or 1 in 2100. Because of the birthday paradox, however, there will be a reasonable

chance of a collision between a pair of exports after only 250 exports. This number decreases

further for Storage Capsules larger than 2 GB. Running 250 exports would still take an extremely

long time (36 million years running 1 export / second). We believe that such an attack is unlikely

to be an issue in reality, but could be mitigated if future tweaked encryption schemes support

256-bit tweak values.

3.4.7 Key Escape Sequences

During all Capsule operations, the primary VM and the Capsule viewer are not trusted.

Some steps in the Capsule system’s operation involve the viewer asking the user to enter a key

escape sequence. If the primary VM becomes compromised, however, it could just skip asking

the user to enter escape sequences and display a spoofed UI that looks like what would show up if

the user had hit an escape sequence. This attack would steal the file decryption password while

the system is still in normal mode. The defense against this attack is that the user should be

accustomed to entering the escape sequence and therefore hit it anyway or notice the anomalous

behavior.

It is unclear how susceptible real users would be to a spoofing attack that omits asking for

an escape sequence. The success of such an attack is likely to depend on user education. Formally

www.manaraa.com

 36

evaluating the usability of escape sequences in the Capsule system is future work. Another design

alternative that may help if spoofing attacks are found to be a problem is reserving a secure area

on the display. This area would always tell the user whether the system is in secure mode or if the

secure VM has control of the UI.

3.5 Covert Channel Analysis

The Storage Capsule system is designed to prevent any direct flow of information from

secure mode to normal mode. However, there are a number of covert channels through which

information may be able to persist during the transition from secure to normal mode. This section

tries to answer the following questions about covert channels in the Capsule system as best as

possible:

• Where can the primary virtual machine store information that it can retrieve after reverting

to normal mode?

• What defenses might fully or partially mitigate these covert information channels?

We do not claim to expose all covert channels here, but list many channels that have been

uncovered during this research. Likewise, the proposed mitigation strategies are not necessarily

optimal, but represent possible approaches for reducing the bandwidth of covert channels.

Measuring the maximum bandwidth of each covert channel requires extensive analysis and is

beyond the scope of this work. There has been a great deal of research on measuring the

bandwidth of covert channels [Browne94, Kang95, Moskowitz94, Percival05, Trostle91,

Wang06], which could be applied to calculate the severity of covert channels in the Capsule

system in future work.

The covert channels discussed in this section can be divided into four categories:

1. Primary OS and Capsule – Specific to Storage Capsule design

2. External Devices – Includes floppy, CD-ROM, USB, SCSI, etc.

3. VMM – Arising from virtual machine monitor implementation, includes memory mapping

and virtual devices

4. Core Hardware – Includes CPU and disk drives

The Capsule system prevents most covert channels in the first two categories. It can use

the VMM to mediate the primary virtual machine’s device access and completely erase the

primary VM’s state when reverting to normal mode. The Capsule system also works to mitigate

timing channels when switching between modes of operation.

www.manaraa.com

 37

Storage Capsules do not necessarily protect against covert channels in the last two

categories. There has been a lot of work on identifying, measuring, and mitigating covert

channels in core hardware for traditional MLS systems [Kang95, Kemmerer83, Moskowitz94,

Trostle91]. Similar methods for measuring and mitigating those core channels could be applied to

Storage Capsules. Covert channels arising from virtualization technology have not received much

attention. This research hopes to highlight some of the key mechanisms in a VMM that can

facilitate covert communication. The remainder of this section explores covert channels in each of

these categories, including mitigation strategies and their required trade-offs.

This discussion of covert channels also applies to most side channels, which have a

weaker threat model. In a side channel attack, the hacker would obtain some residual secret

information from secure mode, without collusion of the primary VM during secure mode. An

example of a side channel attack would be recovering bits of the file encryption key by

monitoring re-encryption time during an export operation. Previous work looks at side channels

in cryptographic algorithms [Kocher96]. Side channels may exist in the Storage Capsule system,

but we do not explicitly evaluate them here. Exploiting side channels is likely to be more difficult

than exploiting covert channels, which only requires compromising the unprotected and low-

integrity Primary VM.

3.5.1 Primary OS and Storage Capsule Channels

In addition to covert channels that one might find in other systems, the design of Storage

Capsules creates opportunities for covert communication. This section focuses on the interactions

between the primary VM and the secure VM. The primary VM should not be able to affect the

secure VM’s state during secure mode in a way that it can detect during normal mode. Here we

examine three attack vectors that a compromised primary VM might use to steal data, and

corresponding counter-measures.

Transition Timing

When the VMM restores the primary virtual machine from a snapshot, the restored state

contains the exact same information as prior to entering secure mode. Following the restoration,

the primary VM can obtain additional information by fetching the system time, which tells it

when the system returned to normal mode. If the primary VM can manipulate the transition

timing, then it can leak data.

The Capsule system prevents direct leaks through transition timing by requiring a secure

key escape sequence to switch back to normal mode. However, the primary VM may still be able

www.manaraa.com

 38

to affect transition timing depending on how long the Capsule server waits for the primary VM to

flush disk writes to the Storage Capsule. One option that would preclude manipulation of

transition timing would be for the Capsule server to wait a fixed time-period for disk writes to

complete. This would be the most secure approach. Unfortunately, this strategy would either

impact usability or threaten correctness. If the server were to stall 30 seconds – the default write-

back delay for Linux – then the transition time would be unnecessarily long in most cases. On the

other hand, if it only waited a few seconds, then some delayed writes might fail and corrupt the

Storage Capsule.

For our implementation of the Capsule system, we chose a transition timing policy that

sacrifices a few bits of potential information leakage per transition, but is more usable. The

Capsule server will wait for the primary VM to flush Storage Capsule writes for up to 30 seconds.

If the primary VM finishes the disk flush in less than 30 seconds, the server will immediately

proceed with restoration. This opens up the possibility of the primary VM stalling after flushing

writes so that it can read back timing information after returning to normal mode. The maximum

bandwidth of this timing channel is somewhat limited, however, because the snapshot restoration

adds noise to the transition time. Depending on how much memory the primary VM has, the

amount of time between exiting secure mode and resuming in normal mode can vary by several

seconds. By notifying the server at a specific offset from the most recent half-minute, the primary

VM will only be able to communicate a few bits of data. One possible counter-measure to this

type of timing channel would be to deliberately skew the clock during secure mode so the

primary VM cannot accurately judge system time.

Storage Capsule Contents

The ideal place for a compromised primary VM to store data would be in the Storage

Capsule itself. It is essential that the Capsule server cut off this channel. First, Storage Capsules

must have a fixed size. This imposes a small usability limitation, which we believe is reasonable

given that other popular systems like TrueCrypt [TrueCrypt09] fix the size of encrypted file

containers. Enforcing the next constraint required to cut off storage channels is slightly more

complicated. No matter what changes the primary VM makes to the Storage Capsule in secure

mode, it must not be able to deduce what has been changed after the Capsule server exports the

Storage Capsule. As discussed earlier, XTS-AES encryption with a different tweak value for each

export satisfies this requirement. Whether the primary VM changes every single byte or does not

touch anything, the resulting exported Storage Capsule will be random with respect to its original

contents.

www.manaraa.com

 39

Social Engineering Attacks

If the primary virtual machine cannot find a way to leak data directly, then it can resort to

influencing user behavior. The most straightforward example of a social engineering attack would

be for the primary VM to deny service to the user by crashing at a specific time, and then

measuring transition time back to normal mode. There is a pretty good chance that the user would

respond to a crash by switching back to normal mode immediately, especially if the system is

prone to crashing under normal circumstances. In this case, the user may not even realize that an

attack is taking place. Another attack that is higher-bandwidth, but perhaps more suspicious,

would be for the primary VM to display a message in secure mode that asks the user to perform a

task that leaks information. For example, a message could read “Automatic update failed, please

open the update dialog and enter last scan time ‘4:52 PM’ when internet connectivity is restored.”

Users who do not understand covert channels could easily fall victim to this attack. In general,

social engineering is difficult to prevent. The Capsule system currently does not include any

counter-measures to social engineering. In a real deployment, the best method of fighting covert

channels would be to properly educate the users.

3.5.2 External Device Channels

Any device that is connected to a computer could potentially store information.

Fortunately, most devices in a virtual machine are virtual devices, including the keyboard, mouse,

network card, display, and disk. In a traditional system, two processes that have access to the

keyboard could leak data through the caps-, num-, and scroll-lock state. The VMware VMM

resets this device state when reverting to a snapshot, so a virtual machine cannot use it for leaking

data. We did not test virtualization software other than VMware to see how it resets virtual device

state.

Some optional devices may be available to virtual machines. These include floppy drives,

CD-ROM drives, sound adapters, parallel ports, serial ports, SCSI devices, and USB devices. In

general, there is no way of stopping a VM that is allowed to access these devices from leaking

data. Even devices that appear to be read-only, such as a CD-ROM drive, may be able to store

information. A VM could eject the drive or position the laser lens in a particular spot right before

switching back to normal mode. While these channels would be easy to mitigate by adding noise,

the problem worsens when considering a generic bus like USB. A USB device could store

anything or be anything, including a disk drive. One could allow access to truly read-only

devices, but each device would have to be examined on an individual basis to check for covert

channels. The Capsule system prevents these covert channels because the primary VM is not

www.manaraa.com

 40

given access to external devices. If the primary VM needs access to external devices, then they

would have to be disabled during secure mode.

3.5.3 Virtual Machine Monitor Channels

In a virtualization system, everything is governed by the virtual machine monitor,

including memory mapping, device I/O, networking, and snapshot saving/restoration. The

VMM’s behavior can potentially open up new covert channels that are not present in a standard

operating system. These covert channels are implementation-dependent and may or may not be

present in different VMMs. This section serves as a starting point for thinking about covert

channels in virtual machine monitors.

Memory Paging

Virtual machines are presented with a virtual view of their physical memory. From a

VM’s perspective, it has access to a contiguous “physical” memory segment with a fixed size.

When a VM references its memory, the VMM takes care of mapping that reference to a real

physical page, which is commonly called a machine page. There are a few different ways that a

VMM can implement this mapping. First, it could directly pin all of the virtual machine’s

physical pages to machine pages. If the VMM uses this strategy, and it keeps the page mapping

constant during secure mode and after restoration, then there is no way for a virtual machine to

affect physical memory layout. However, this fixed mapping strategy is not always the most

efficient way to manage memory.

Prior research describes resource management strategies in which the VMM may over-

commit memory to virtual machines and page some of the VM’s “physical” memory out to disk

[Govil99, Waldspurger02]. If the VMM employs this strategy, then a virtual machine can affect

the VMM’s page table by touching different pages within its address space. The residual effects

of page table manipulation may be visible to a VM after a snapshot restoration, unless the VMM

first pages in all of the VM’s memory. A snapshot restoration should page in all of a VM’s

memory in most cases. But, if it is a “background” restoration, then accessing a memory location

that has not been loaded from the snapshot yet and is paged out to disk might incur two page

faults instead of one, which can be measured and may leak information.

VMware ESX server employs a number of tricks that allow it to over-commit memory to

virtual machines [Waldspurger02]. Each of the mechanisms described by Waldspurger allow

efficient server consolidation, but also create an opportunity for covert channels. The first

mechanism he describes is ballooning. Guest virtual machines contain balloon drivers that

www.manaraa.com

 41

allocate extra memory and then tell the VMM it can page out the corresponding “physical” pages.

A misbehaving guest OS can exploit ballooning by touching the balloon driver’s pages and

causing the VMM to load them in from disk. When the VM is subsequently reverted to a

snapshot, the compromised OS can again touch all of the balloon driver pages to see whether they

have already been faulted in prior to the snapshot restoration. The VMM could mitigate this

ballooning channel by restoring the state of its page table to match the original set of ballooned

pages when restoring a snapshot. Of course, ballooning may be used as a covert channel between

simultaneously executing VMs in systems other than Capsule.

There has also been research on sharing memory pages with the same content in virtual

machines [Bugnion97, Waldspurger02]. If the VMM maps multiple pages to one machine page

and marks them as copy-on-write, then the virtual machine will encounter a page fault when

writing to one of them. If a VM sets a large number of pages to have the same value during

secure mode, then a much larger number of page faults will take place when restoring a snapshot.

However, these page faults will only be noticeable to the VM if execution resumes in normal

mode before all of the VM’s memory pages are loaded from the snapshot file. In this case, the

VM can measure the total restoration time or write to pages before they have loaded and test for

page faults to recover information. If the VM resumes execution after its memory has been fully

restored and pages have been re-scanned for duplication, then this covert channel will not work.

The Capsule system does not over-commit memory for virtual machines, so the memory

saving techniques mentioned above do not take effect. Our implementation of the Capsule system

does not employ any counter-measures to covert channels based on memory paging.

Virtual Networks

The Capsule system blocks external network access during secure mode, but it relies on a

virtual network for communication between the secure VM and the primary VM. While the

virtual network itself is stateless (to the best of our knowledge), anything connected to the

network could potentially be a target for relaying information from secure mode to normal mode.

The DHCP and NAT services in the VMM are of particular interest. A compromised virtual

machine may send arbitrary packets to these services in an attempt to affect their state. For

example, a VM might be able to claim several IP addresses with different spoofed MAC

addresses. It could then send ARP requests to the DHCP service following snapshot restoration to

retrieve the spoofed MAC addresses, which contain arbitrary data. The Capsule system restarts

both the DHCP and NAT services when switching back to normal mode to avoid this covert

channel.

www.manaraa.com

 42

Any system that allows both a high-security and low-security VM to talk to a third

trusted VM (e.g., secure VM in Capsule) exposes itself another covert channel. Naturally, all bets

are off if the primary VM can compromise the secure VM. Even assuming the secure VM is not

vulnerable to remote exploitation, it still may be manipulated to relay data from secure mode back

to normal mode. Like the DHCP service on the host, the secure VM’s network stack stores

information. For example, the primary VM could send out TCP SYN packets with specific source

port numbers that contain several bits of data right before reverting to normal mode. When the

primary VM resumes execution, it could see the source ports in SYN/ACK packets from the

secure VM.

It is unclear exactly how much data can be stashed in the network stack on an

unsuspecting machine and how long that information will persist. The only way to guarantee that

a machine will not inadvertently relay state over the network is to reboot it. This is the approach

we take to flush the secure VM’s network stack state when switching back to normal mode in

Capsule.

Guest Additions

The VMware VMM supports additional software that can run inside of virtual machines

to enhance the virtualization experience. The features of guest additions include drag-and-drop

between VMs and a shared clipboard. These additional features would undermine the security of

any virtual machine system with multiple confidentiality levels and are disabled in the Capsule

system.

3.5.4 Core Hardware Channels

Core hardware channels allow covert communication via one of the required primary

devices: CPU or disk. Memory is a core device, but memory mapping is handled by the VMM,

and is discussed in the previous section. Core hardware channels might exist in any multi-level

secure system and are not specific to Storage Capsules or virtual machines. One difference

between prior research and this work is that prior research focuses on a threat model of two

processes that are executing simultaneously on the same hardware. In the Capsule system, the

concern is not with simultaneous processes, but with a low-security process (normal-mode VM)

executing on the same hardware after a high-security process (secure-mode VM) has terminated.

This constraint rules out some traditional covert channels that rely on resource contention, such as

a CPU utilization channel.

www.manaraa.com

 43

CPU State

Restoring a virtual machine’s state from a snapshot will overwrite all of the CPU register

values. However, modern processors are complex and store information in a variety of persistent

locations other than architecture registers. Many of these storage areas, such as branch prediction

tables, are not well-documented or exposed directly to the operating system. The primary method

for extracting this state is to execute instructions that take a variable number of clock cycles

depending on the state and measure their execution time, or exploit speculative execution

feedback. Prior research describes how one can use these methods to leak information through

cache misses [Percival05, Wang06].

There are a number of counter-measures to covert communication through CPU state on

modern processors. In general, the more instructions that execute in between secure mode and

normal mode, the less state will persist. Because the internal state of a microprocessor is not

completely documented, it is unclear exactly how much code would need to run to eliminate all

CPU state. One guaranteed method of wiping out all CPU state is to power off the processor.

However, recent research on cold boot attacks [Halderman08] shows that it may take several

minutes for memory to fully discharge. This strategy would lead to an unreasonably long delay

when switching from secure mode to normal mode.

The ideal solution for eliminating covert CPU state channels in Capsule and other

virtualization systems would be with hardware support. The latest CPUs already support

hardware virtualization, which allows them to fully emulate instruction sets for virtual machines.

An additional mechanism is needed when switching between virtual machines that not only

restores register and memory mappings, but also restores all state that could affect VM execution.

This operation would load all of the cache data (L1, L2, and instruction), the branch prediction

table, and any other intermediate state. It would also be sufficient to provide an instruction that

would erase all of this data.

Although the Capsule system does not take counter-measures to prevent CPU state covert

channels, the VMM restores a significant portion of the primary VM’s original memory state

before the VM can resume execution. This restoration will likely eliminate any residual cache

lines from secure mode. It will also add a great deal of noise to any other CPU state, such as

branch prediction tables, due to the number of instructions that execute during restoration.

Computing the maximum bandwidth of CPU state channels in the Capsule system is future work.

www.manaraa.com

 44

Disk State

The caching and layout of files on disk, and in the file system, can be used to transmit

information. Another covert channel exists in the positioning of the disk arm [Gold79]. If the

primary VM can manipulate disk state in a way that is readable after transitioning back to normal

mode, then it can leak data. There are a few aspects of the Capsule system’s design that make

such an attack much more difficult. Any writes to the virtual disk during secure mode actually go

to flat difference file that stores changes since the last snapshot operation. The primary VM has

no control over where the data goes on disk, only how much is written., which would make

exploitation of such a channel difficult. The VMM also deletes this file when transitioning back

to normal mode. This frees up any blocks that were allocated for the difference file. Finally, the

VMM reads in the primary VM’s original memory state from disk during snapshot restoration.

This moves the position of the disk arm and adds considerable noise to the cache.

Despite the noise from transitioning back to normal mode, the disk cache is a likely

candidate for a covert channel. All writes are sent to a difference file and deleted, but reads touch

the same virtual disk file during secure mode and normal mode. Consider the primary VM

sequentially reading every block on its disk during secure mode to transmit a 1, or reading very

little to transmit a 0. The primary VM might be able to tell what happened in secure mode by

reading back disk blocks and measuring if they hit the disk cache. One would need to flush all of

the disk caches to eliminate this channel. The Capsule system does not take any steps to mitigate

disk state channels.

3.5.5 Mitigating VMM and Core Hardware Covert Channels

The design of Storage Capsules centers around improving local file encryption with a

minimal impact on existing behavior. The user has to take only a few additional steps, and no

new hardware is required. The current implementation is designed to guard against many covert

channels, but does not stop all of them, such as the CPU state, through which data may leak from

secure to normal mode. If the cost of small leaks outweighs usability and the cost of extra

hardware, then there is an alternative design that can provide additional security.

One way of cutting off almost all covert channels would be to migrate the primary VM to

a new isolated computer upon entering secure mode. This way, the virtual machine would be

running on different core hardware and a different VMM while in secure mode, thus cutting off

covert channels at those layers. VMware ESX server already supports live migration, whereby a

virtual machine can switch from one physical computer to another without stopping execution.

The user would have two computers at his or her desk, and use one for running the primary VM

www.manaraa.com

 45

in secure mode, and the other for normal mode. When the user is done accessing a Storage

Capsule, the secure mode computer would reboot and then make the Storage Capsule available

for export over the network. This extension of the Capsule system’s design would drastically

reduce the overall threat of covert channels, but would requires additional hardware and could

add usability impediments that would not be suitable in many environments.

3.6 Performance Evaluation

There are three aspects of performance that are important for Storage Capsules: (1)

transition time to secure mode, (2) system performance in secure mode, and (3) transition time to

normal mode. It is important for transitions to impose only minimal wait time on the user and for

performance during secure mode to be comparable to that of a standard computer for common

tasks. This section evaluates Storage Capsule performance for transitions and during secure

mode. The experiments were conducted on a personal laptop with a 2 Ghz Intel T2500 processor,

2 GB of RAM, and a 5200 RPM hard drive. Both the host and guest operating systems (for the

secure VM and primary VM) were Windows XP Service Pack 3, and the VMM software was

VMware Workstation ACE Edition 6.0.4. The secure VM and the primary VM were both

configured with 512 MB of RAM and to utilize two processors, except where indicated

otherwise.

The actual size of the Storage Capsule does not affect any of the performance numbers in

this section. It does, however, influence how long it takes to run an import or export. Both import

and export operations are expected to be relatively rare in most cases – import only occurs when

loading a Storage Capsule from an external location, and export is required only when transfering

a Storage Capsule to another user or machine. Importing and exporting consist of a disk read,

0
1

2
3
4
5

6
7
8
9

10

256 512 1024

VM Memory (MB)

S
ec

o
n

d
s

0

50

100

150

200

250

300

256 512 1024

VM Memory (MB)

S
ec

o
n

d
s

Snapshot

Mount
Capsule

Disable
Netw ork

0
10

20
30
40
50

60
70
80
90

100

256 512 1024

VM Memory (MB)

S
ec

o
n

d
s

0

50

100

150

200

250

300

256 512 1024

VM Memory (MB)

S
ec

o
n

d
s Restore

Reset VM

Flush Disk

 (a) (b) (c) (d)

Figure 3.2. Transition times for different amounts of primary VM memory.
(a) to secure mode with background snapshot, (b) to secure mode with full snapshot,

(c) to normal mode with background restore, and (d) to normal mode with full restore.

www.manaraa.com

 46

encryption (for export only), a local network transfer, and a disk write. On our test system, the

primary VM could import a 256 MB Storage Capsule in approximately 45 seconds and export it

in approximately 65 seconds. Storage Capsules that are imported and exported more often, such

as e-mail attachments, are likely to be much smaller and should take only a few seconds.

3.6.1 Transitioning to and from Secure Mode

The transitions to and from secure mode consist of several tasks. These include

disabling/enabling device output, mounting/dismounting the Storage Capsule, saving/restoring

snapshots, waiting for an escape sequence, and obtaining the encryption key. Fortunately, some

operations can happen in parallel. During the transition to secure mode, the system can do other

things while waiting for user input. The evaluation does not count this time, but it will reduce the

delay experienced by the user in a real deployment. VMware also supports both background

snapshots (copy-on-write) and background restores (copy-on-read). This means that execution

may resume in the primary VM before memory has been fully saved or restored from the

snapshot file. The system will run slightly slower at first due to page faults, but will speed up as

the snapshot or restore operation nears completion. A background snapshot or restore must

complete before another snapshot or restore operation can begin. This means that even if the

primary VM is immediately usable in secure mode, the system cannot revert to normal mode until

the snapshot is finished.

Figure 3.2 shows the amount of time required for transitioning to and from secure mode

with different amounts of RAM in the primary VM. Background snapshots and restorations make

a huge difference. Transitioning to secure mode takes 4 to 5 seconds with a background snapshot,

and 60 to 230 seconds without. The time required for background snapshots, mounting the

Storage Capsule, and disabling network output also stays fairly constant with respect to primary

VM memory size. However, the full snapshot time scales linearly with the amount of memory.

Note that the user must wait for the full snapshot time before reverting to normal mode.

The experiments show that reverting to normal mode is a more costly operation than

switching to secure mode, especially when comparing the background restore to the background

snapshot operation. This is because VMware allows a virtual machine to resume immediately

during a background snapshot, but waits until a certain percentage of memory has been loaded in

a background restore. Presumably, memory reads are more common than memory writes, so

copy-on-read for the restore has worse performance than copy-on-write for the snapshot.

VMware also appears to employ a non-linear strategy for deciding what portion of a background

restore must complete before the VM may resume execution. It waited approximately the same

www.manaraa.com

 47

amount of time when a VM had 256 MB or 512 MB of RAM, but delayed significantly longer for

the 1 GB case.

The total transition times to secure mode are all reasonable. Many applications will take 4

or 5 seconds to load a document anyway, so this wait time imposes little burden on the user. The

transition times back to normal mode for 256 MB and 512 MB are also reasonable. Waiting less

than 20 seconds does not significantly disrupt the flow of work. However, 60 seconds may be

long wait time for some users. It may be possible to optimize snapshot restoration by using copy-

on-write memory while the primary VM is in secure mode. This way, the original memory would

stay in tact and the VMM would only need to discard changes when transitioning to normal

mode. Optimizing transition times in this manner is future work.

3.6.2 Performance in Secure Mode

Accessing a Storage Capsule imposes some overhead compared to a normal disk. A

Storage Capsule read or write request traverses the file system in the primary VM, and is then

sent to the secure VM over the virtual network. The request then travels through a layer of

encryption on the secure VM, out to its virtual disk, and then to the physical drive. We compared

the disk and processing performance of Storage Capsules to three other configurations. These

configurations consisted of a native operating system, a virtual machine, and a virtual machine

with a TrueCrypt encrypted file container. For the evaluation, we ran an Apache build

benchmark. This benchmark involves decompressing and extracting the Apache web server

source code, building the code, and then removing all of the files. The Apache build benchmark

0

50

100

150

200

250

300

350

400

450

Native VM VM + TC Capsule

Configuration

Ti
m

e
(s

ec
on

ds
)

Remove

Build

Unpack

Figure 3.1. Results from building Apache with a native OS, a virtual machine, a virtual machine

running TrueCrypt, and Capsule. Storage Capsules add only a 5% overhead compared to a VM with
TrueCrypt, 18% compared to a plain VM, and 38% overhead compared to a native OS.

www.manaraa.com

 48

probably represents the worst case scenario for Storage Capsule usage. We expect that the

primary use of Storage Capsules will be for less disk-intensive activities like editing documents

or images, for which the overhead should be unnoticeable.

Figure 3 shows the results of the Apache build benchmark. Storage Capsules performed

well overall, only running 38% slower than a native system. Compared to a single virtual

machine running similar encryption software (TrueCrypt), Storage Capsules add an overhead of

only 5.1% in the overall benchmark and 31% in the unpack phase. This shows that transferring

reads and writes over the virtual network to another VM has a reasonably small performance

penalty. The most significant difference can be seen in the remove phase of the benchmark. It

executes in 1.9 seconds on a native system, while taking 5.5 seconds on a VM, 6.5 seconds on a

VM with TrueCrypt, and 7.1 seconds with Storage Capsules. The results from the VM and VM

with TrueCrypt tests show, however, that the slowdown during the remove phase is due primarily

to disk performance limitations in virtual machines rather than the Capsule system itself.

3.7 Conclusion and Future Work

This chapter introduced Storage Capsules, a new mechanism for securing files on a

personal computer. Storage Capsules are similar to existing encrypted file containers, but protect

sensitive data from malicious software during decryption and editing. The Capsule system

provides this protection by isolating the user’s primary operating system in a virtual machine. The

Capsule system turns off the primary OS’s device output while it is accessing confidential files,

and reverts its state to a snapshot taken prior to editing when it is finished. One major benefit of

Storage Capsules is that they work with current applications running on commodity operating

systems.

Covert channels are a serious concern for Storage Capsules. This research explores covert

channels at the hardware layer, at the VMM layer, in external devices, and in the Capsule system

itself. It looks at both new and previously examined covert channels from a novel perspective,

because Storage Capsules have different properties than side-by-side processes in a traditional

multi-level secure system. The research also suggests ways of mitigating covert channels and

highlights their usability and performance trade-offs. Finally, we evaluated the overhead of

Storage Capsules compared to both a native system and standard virtual machines. We found that

transitions to and from secure mode were reasonably fast, taking 5 seconds and 20 seconds,

respectively. Storage Capsules also performed well in an Apache build benchmark, adding 38%

www.manaraa.com

 49

overhead compared to a native OS, but only a 5% penalty when compared to running current

encryption software inside of a virtual machine.

In the future, we plan to further explore covert channels discussed in this work. This

includes measuring their severity and quantifying the effectiveness of mitigation strategies. We

also hope to conduct a study on usability of keyboard escape sequences for security applications.

Storage Capsules rely on escape sequences to prevent spoofing attacks by malicious software, and

it would be beneficial to know how many users of the Capsule system would still be vulnerable to

such attacks.

www.manaraa.com

 50

CHAPTER 4

NETWORK-BASED CONFIDENTIALITY
THREAT DETECTION

4.1 Overview

Proactive controls, both at the host and the network level, are not enough to protect

against all security threats. As a society and a research community, we are far form adequately

securing computers that house confidential information. Host-level systems with strict security

controls, such as Capsule, which was presented in the previous chapter, are only able to provide

security guarantees in a limited set of scenarios. Furthermore, host-level security software

deployment incurs a significant management overhead and simply may not happen due to cost or

lack of expertise.

Current network-based security systems, such as firewalls and intrusion detection

systems (IDSs), do an incomplete job of mitigating threats that slip past host-level controls. Many

of them operate on network traffic at the transport layer and are unable to identify malicious

traffic that falls within the domain of acceptable activity from a network perspective, such as

downloading malicious software sent in an e-mail message. Those that do inspect application

layer information are fundamentally limited by their approach of directly searching for malicious

activity. In order to effectively search for bad network traffic, one must know what it looks like

ahead of time, which is difficult for the latest threats, which are rapidly evolving.

Here, we begin to address the problem of detecting malicious activity over the network

by classifying network traffic based on its source application. As the size and diversity of the

Internet grows, so do the applications that use the network. Originally, network applications such

as web browsers, terminal clients, and e-mail readers were the only programs accessing the

Internet. Now, almost every application has a networking component, whether it is to obtain

updates, manage licensing, or report usage statistics. Although pervasive network connectivity

provides a number of benefits, it also introduces security risks. In addition to software that is

www.manaraa.com

 51

outright malicious, many programs that access the network allow users to leak confidential

information or expose them to new attack vectors. An example is instant messaging (IM)

software. Most IM programs permit direct file transfers. Also, so-called IM viruses are able to

circumvent security systems by going through the IM network itself [Mannan05]. Peer-to-peer

file sharing software presents a risk as well because files often come packaged with Trojan horse

malware. Being able to categorize network traffic and determine its origin, including traffic from

unwanted programs that are not directly malicious, is a critical first step in effectively searching

for confidentiality threats.

In this chapter, we present methods for detecting network applications by only looking at

their web traffic. These methods differentiate programmatic web service access from human web

browsing and expose information about active network applications. The methods focus on two

key aspects of web traffic: timing and formatting. Human web requests occur in randomly

interspersed bursts. Programmatic web requests, on the other hand, will often happen at regular

fixed intervals. Humans also tend to browse the web at specific times according to a schedule,

while programs may access the web at any hour of the day or night. We take advantage of this

knowledge to discover network applications that call home on a regular basis.

Another web traffic characteristic that we examine in this chapter is formatting. The

HTTP protocol specification contains a “User-Agent” field that applications may use to identify

themselves. Although most malicious programs do not identify themselves as such, they will

often select a user-agent value that does not match any legitimate programs or omit the field

entirely. HTTP also allows for application-specific extension header fields that may hold arbitrary

information. The presence of a new or different header field in a request indicates that it came

from a non-browser network application. Again, some malware tries to mimic a web browser in

its traffic formatting. However, malware writers are prone to human error and may accidentally

include an anomalous header field. An example is a spyware program that mistakenly spelled an

HTTP header field “referrer” (the correct dictionary spelling), while the specification states that it

should be spelled “referer,” an incorrect spelling. Our analysis allows us to quickly detect

network applications with unique message formatting, which includes a significant amount of

malicious software.

We evaluated the accuracy of our timing and formatting analyses by testing them on web

traffic collected from 30 users over a 40-day period. The algorithms presented in this chapter

were able to effectively detect programmatic web access while generating few false positives. Of

the total alerts, only 7% were false positives, an average of about one per day. We believe this to

be an acceptable false positive rate given the number of computers in the study.

www.manaraa.com

 52

In this chapter, we chose to focus on HTTP traffic. The reasons for this are twofold. First,

HTTP is the most widely-allowed network protocol, and is often the only way to communicate

data out to the Internet through firewalls and proxy servers. Second, the HTTP protocol probably

has more implementations by more different applications than any other protocol. Protocols such

as secure shell and FTP are usually only implemented by secure shell and FTP utilities, not by

other programs that only use the Internet for registration, licensing, and updates.

The rest of this chapter is laid out as follows. Section 4.2 discusses related work on

detecting network applications. Section 4.3 describes the timing analysis methods. Section 4.4

presents the formatting analysis techniques. Section 4.5 shows the results from our test

deployment. Section 4.6 includes results from an evaluation against known tunneling programs.

Section 4.7 talks about how a hacker could bypass the analysis techniques presented in this

chapter. Finally section 4.8 concludes and discusses future work.

4.2 Related Work

Network monitoring systems exist that can differentiate between traffic of different

protocols regardless of the transport-layer port [Netwitness09, Sandvine09]. These systems can

even identify protocol tunneling. (Tunneling is when one application-layer protocol is embedded

within the payload of another, e.g., HTTPS is HTTP tunneled over SSL.) In this chapter, we go a

step further by identifying different applications that implement the same protocol. This is a more

difficult problem because the differences between implementations of the same protocol are much

more subtle.

Brumley et al. present a system for automatically discovering deviations between

implementations of the same network protocol [Brumley07]. Their approach involves binary

analysis of the programs in question. In contrast, the algorithms presented in this chapter can

differentiate between different applications that use the same protocol (HTTP) without any prior

knowledge of the applications or access to the computers on which they are executing.

Furthermore, the system presented by Brumley et al. can only generate network inputs that

expose implementation differences, typically in network servers. While the network applications

we consider in this chapter may take network inputs, our algorithms instead passively examine

the network outputs to differentiate client network applications from one another.

Zhang and Paxson describe a method for detecting backdoors [Zhang00]. They look at

the timing of packet arrivals and packet sizes in order to characterize an interactive shell. Others

have observed that keystroke inter-arrival periods follow a Pareto distribution [Danzig92]. The

www.manaraa.com

 53

Pareto model does not extend to spyware and unwanted network applications that we hope to

identify in this chapter because they communicate automatically. The Pareto model only works

for traffic that corresponds to human key-presses. Instead, delay times from network applications

will follow a distribution according to the callback algorithm chosen by the programmer.

Focusing on connections with small packet sizes does not help identify network applications

either; they can and do send messages with arbitrary sizes.

Significant research exists on characterizing human browsing patterns to enhance proxy

cache and web server performance [Barford98, Duska97, Kelly02]. We look at some of the same

traffic characteristics in this chapter. However, the purpose of our analysis is identifying non-

human web traffic, not improving server performance.

Kruegel et al. outline a method for detecting malicious web requests at the web server

[Kruegel03]. They build a probabilistic profile of web request parameters and detect deviations

from this profile. The methods presented in this chapter are different because they aim to identify

different network applications by looking at client-side traffic. Due to the diversity of websites on

the Internet, it would not be feasible to build a profile for normal web browsing to servers in this

manner.

4.3 Timing Analysis

In this section, we explore two methods for differentiating between network messages

resulting from human input, and those generated by automated processes. We created these

algorithms based on observations from real web traffic for 30 users over a one-week period. Both

of these methods consider groups of HTTP messages between each client and each server as

separate. The messages between a particular client and server need not all have come from an

automated process; the following algorithms are designed to identify HTTP traffic from which

any of the requests are automatic. Furthermore, if an application communicates with multiple web

servers, then these techniques will identify each server that receives automated requests.

4.3.1 Regularity

Human web browsing tends to occur in short bursts. Automated web requests, on the

other hand, happen at more regular intervals. We measure request regularity by looking at the

amount of outbound bandwidth during 5-minute intervals over the past 8 hours and 48 hours. The

goal of measuring regularity is to expose automated web requests, even if they occur at random

intervals and are interlaced with human activity.

www.manaraa.com

 54

Here, we present two methods for computing regularity. The first is to count the number

of five-minute time periods during which at least one request was seen for a particular site. If

requests appear too often, then they are probably coming from an automated process. Figure 4.1a

shows a plot of bandwidth counts over an 8-hour time period for approximately 400 sites

accessed by a single user. Using a threshold of 16% activity (80+ minutes), we were able to

identify seven sites receiving automated web requests with no false positives. Five of these were

in blatant violation of the threshold; they were active during every 5-minute interval in the 8-hour

time period. The two other websites served periodically-refreshing advertisements. There were

also five servers close to the detection threshold (between 10% and 16%), only two of which

were false positives, both from social networking sites. The 16% threshold was chosen

conservatively to avoid false alarms and could be lowered even further depending on the target

network.

The second method for computing regularity involves calculating the coefficient of

variation (c.o.v.) for 5-minute bandwidth measurements over the previous 8 or 48 hours. The

coefficient of variation is the standard deviation divided by the mean bandwidth usage.

Conceptually, this number represents a normalized deviation. If requests occur in short bursts,

which is characteristic of normal human activity, then the coefficient of variation will be high.

Low variation in bandwidth usage is indicative of automated activity. The plot of the coefficient

of variation measurements for an 8-hour time period can been seen in Figure 4.1b. We found

thresholds of 3.3 for 8 hours and 4.5 for 48 hours to be effective. At those settings, the coefficient

of variation method detected nine sites in violation of the threshold both over an 8-hour and a 48-

hour period, none of which were false positives. Much like the sites close to the threshold for the

 (a) (b)

Figure 4.1. (a) Seven sites were detected by usage counts for ~400 sites over 8 hours
with a detection threshold of 16% (b) Nine Sites were detected using the deviation

over mean during an 8 hour period with a detection threshold of 3.3

www.manaraa.com

 55

counting method, three of the five sites just above 3.3 were false positives, all associated with

social networking sites. For a network with less frequent browsing, the threshold for this filter

could be effectively raised to around 4.0 for an 8-hour period without producing many false

positives. All of the seven sites filtered by the counting method were also filtered by the

coefficient of variation method.

The reason for employing two different algorithms to measure regularity is that they each

have advantages in different circumstances. The c.o.v. measurement is generally more effective

for differentiating between human and automated requests. However, a malicious network

application could remain active during every 5-minute time interval over an 8-hour period

without exceeding the c.o.v. threshold by varying the amount of bandwidth in each interval. This

type of attack would fail if both the count and c.o.v. algorithms are deployed.

4.3.2 Inter-Request Delay

Some network applications generate requests using a fixed-interval timer. The goal of our

delay-time measurements is to identify timer-driven requests. We measured the inter-request

delay time for requests to each server from each client. We stored these delay measurements in

individual vectors for each client/server pair and in an aggregate vector for all clients and servers

to observe the general inter-request delay distribution. Figure 4.2a shows the probabilistic

distribution of all delay times. You can notice jumps in the cumulative distribution function

(CDF) at 30 seconds, 4 minutes, and 5 minutes. There are also less-pronounced jumps at 15

 (a) (b)

Figure 4.2. (a) Aggregate delay-time CDF with jumps at t = 30 seconds, 4 minutes, and 5 minutes. (b)
Y-derivative of CDF and running average used to detect anomalies.

www.manaraa.com

 56

minutes, 30 minutes, and one hour. These jumps correspond to requests that are driven by fixed-

interval timers.

The jumps can be observed more clearly if we take the derivative with respect to the y-

axis of the cumulative distribution function. This can be seen in Figure 4.2b. The derivative is

plotted along with its running average multiplied by 0.8. The average helps to illustrate places

where the derivative drops below the amount of a typical fluctuation. The dips in the derivative

that drop below the dotted line correspond to jumps in the distribution at times 30 seconds, 60

seconds, 90 seconds, 4 minutes, 5 minutes, 15 minutes, 30 minutes, 60 minutes respectively.

Equations for the derivative and the average can be seen in Figure 4.3. V is a vector of delay

times taken from every nth element in the full delay vector for a site. We chose the maximum of

the square root of the full vector size or five for n. The value a represents the number of values

used in the running average. We picked the maximum of the square root of the size of V or 3 for

a.

4.3.3 Time of Day

The time of day during which a computer generates HTTP requests can help determine

whether or not those requests are the result of human activity or come from an automated

program. The optimal way to identify automated requests is to have an out-of-band input that tells

us whether or not the user is actively using the computer. This could be achieved using a

hardware device that passively monitors disk and keyboard activity, or by installing a monitoring

program on each computer. However, direct information about whether the user is active may not

always be available, especially with a passive network monitoring system.

)(2

2

VSizet

t

≤≤

<

⎩
⎨
⎧

−−
=

)V(tV(t) 1

0
Delay of

Derivative

Average

Running

a

itDerivative
a

i
∑

=

−∗
= 1

)(8.

)(1 VSizet ≤≤

Figure 4.3. Equations for the derivative and average of
the delay times seen in Figure 4.2.

www.manaraa.com

 57

For cases where direct information about user activity is unavailable, we can analyze

human usage patterns during a training period and build activity profiles. We found that people

tend to follow fixed schedules. Figure 4.4 illustrates regular web browsing by one home user

during the first six days of observation. The activity times stay fairly consistent from day to day.

After a profile has been built for each user during an initial training period, we can mark HTTP

requests made outside of typical usage times as likely having come from an automated network

application rather than human browsing.

In our study, we looked at request timing for home users, many of whom were college

students with irregular schedules. Still, we observed strikingly consistent browsing patterns. We

expect the time-of-day approach to be even more effective in a work environment where

employees have very regular schedules. Furthermore, the analysis could be extended to create

special schedules for weekends and holidays when human browsing is much less likely in a work

environment and more likely at home.

4.3.4 Eliminating False Positives from Refreshing Web Pages

Without any special processing, false positives will occur for web pages that periodically

refresh. If a user leaves a refreshing web page open, its requests will trigger the time-of-day,

inter-request delay, and request regularity filters. These types of refreshing pages are prevalent on

the Internet and must be eliminated for consideration by the algorithms presented earlier in this

section.

The way that we discount refreshing pages is by explicitly searching for refresh

constructs within each web page. Refresh constructs include the HTML “<meta http-

equiv=”refresh”…>” tag as well as the Javascript “setInterval” and “setTimeout”

functions. If a document contains a refresh construct, it is marked as refreshing. Requests for

refreshing documents are treated as if they occurred at the time of the original document request.

So, if a user loads a refreshing website before going home and leaves it open until the next day,

then the time-of-day, regularity, and delay-time filters will not generate false positives.

Hour: | 1 24
Mar 26(Fri) | ---------------XXXXXXXXX
Mar 27(Sat) | --X---------------------
Mar 28(Sun) | ------------------------
Mar 29(Mon) | ---------------XX--XXX-X
Mar 30(Tue) | X--XX----------XXXXXXXXX
Mar 31(Wed) | ---------------XXXXXXXX-

Figure 4.4. Activity by time of day for one randomly chosen user.
12 AM to 1 AM is on the left, and 11 PM to 12 AM is on the right.

www.manaraa.com

 58

Additionally, we should ignore request times for resources that a client retrieves as a

result reloading a refreshing page. If we only ignore request times for the refreshing page itself,

then we will still see false positives for its embedded images and other objects. The best way of

doing this is to examine the “referer” HTTP request header and determine the page that linked to

the current object. If the referring page was loaded recently, then we can use its effective request

time, which will be the first load time for a refreshing page. This way, we can avoid false

positives from image and object loads associated with refreshing pages.

4.4 Formatting Analysis

The HTTP protocol specification allows for a wide range of message types and header

fields. However, the set of possible HTTP requests that a web browser may send at any given

time is much more limited. The goal of our formatting analysis is to determine the set of HTTP

requests R that a web browser may send and mark any other requests r ∉R as coming from a

non-browser network application. These flagged requests are subsequently fed through a whitelist

to determine their source network application. The whitelisting process is discussed in greater

detail in chapter 6.

There are two general strategies for enumerating the set R of HTTP requests that a

browser may send: stateful analysis and stateless analysis. The result of stateless analysis is a

language of all possible network outputs that a browser would ever generate, regardless of its

inputs. Stateless analysis is simple and yields a large domain of potential HTTP requests. Stateful

analysis, on the other hand, takes previous program inputs into account when determining the set

of possible HTTP requests. A network monitoring system only has network inputs available to it,

but stateful analysis running on the same computer as the web browser could also consider inputs

such as mouse clicks, key presses, and clipboard paste operations.

www.manaraa.com

 59

HTTP requests consist of three sections: the request line, the request headers, and the

request body. A sample HTTP request for the search term “security” at www.google.com can be

seen in Figure 4.5. The first line of the HTTP request is the request line. The first word on this

line is the request method, which is usually either “GET” for obtaining a resource or “POST” for

submitting data in almost all cases. Next is the path of the requested resource, which forms the

request URL when combined with the hostname. The last part of the request line is the HTTP

version, which is either 1.0 or 1.1 for any modern web client. Because the request method and

HTTP version have so few possible values, they are rarely helpful in identifying network

applications. In a stateless formatting analysis, the path can take on any value that is a valid URL

string for a legitimate browser, so it also cannot help us identify network applications.

We focus on the header fields following the request line to uncover information about the

client that made the request. The HTTP specification describes the use of numerous standard

header fields, but allows for custom extension header fields [Fielding99]. An extension header

field can be any alphabetic string (optionally including the characters ‘-’ and ‘_’). The presence of

particular extension header fields will often uniquely identify a network application. We flag any

HTTP request that contains header fields not present in requests made by standard web browsers.

GET /search?hl=en&q=security&btnG=Google+Search HTTP/1.1
Host: www.google.com
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.12)

Gecko/20080201 Firefox/2.0.0.12
Accept: text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,

text/plain;q=0.8,image/png,*/*;q=0.5
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive
Referer: http://www.google.com/
Cookie: PREF=ID=0a2154dbc55bdbef:TM=1206244622:LM=1206244622:S=Ef4gW8gUXozO0f

Figure 4.5. A sample HTTP GET request sent to Google.com by the Firefox browser (version 2.0.0.12)
following a search for the term “security.” The “User-Agent” header field contains a compound value

identifying the operating system (Windows XP), the language (en-US), and the browser.

www.manaraa.com

 60

The HTTP specification includes an optional standard header field known as the “User-

Agent.” The purpose of the User-Agent field is for clients to explicitly identify themselves.

Legitimate network applications will usually include a unique string in the User-Agent field. Only

a few programs, such as news readers, will omit the field entirely. Standard web browsers use

special compound User-Agent values that may include information about the client operating

system, browser plug-ins, client language, etc. An example of a compound User-Agent value can

be seen in Figure 4.5. Because each part of a compound User-Agent may be associated with a

different client application component, we split User-Agent values in this format and flag

requests with elements that are not present in standard browser requests. This not only helps in

identifying legitimate network applications, but also exposes certain adware and spyware

programs that masquerade as useful browser plug-ins.

4.5 Traffic Evaluation

After a one-week learning period, during which we designed the filters and set their

thresholds, we put the filters to the test against 40 days of web traffic from 30 users. The 40 days

of web traffic included 428,608 requests to 6441 different websites totaling 300 Megabytes in

size. During the evaluation, all the filters were active for every site and user. The purpose was to

measure how effective the filters were at differentiating automated web activity from human

browsing, including the false positive rate. We did not apply any whitelist rules to the resulting

alerts to classify their source network application. To determine false positives, we only checked

to see whether each alert was, in fact, the result of non-browser network application activity.

Table 4.1 summarizes the results of the evaluation. A total of 623 alerts were generated

over the 40-day evaluation period for 30 users, an average of 0.55 alerts per user per day. These

alerts led to the identification of seventeen different non-browser network applications and one

non-standard browser. Six of these were unwanted spyware programs. We found that at least 5

Filter Name # Alerts Avg. Alerts / Day False Positives (Percentage)

Message Format 240 6.00 0 (0%)

Delay Time 118 2.95 6 (5%)

8-Hour 132 3.30 15 (11%) Request
Regularity 48-hour 65 1.63 5 (8%)

Time of Day 68 2.62 19 (28%)

Aggregate 623 16.5 45 (7%) (avg. 1.13 alerts / day)

Table 4.1. Number of alerts and the percentage of alerts that are false positives for each filter.
The aggregate row shows results from running all the filters in parallel.

www.manaraa.com

 61

out of the 30 observed users had some form of adware or spyware on their computers. In addition

to the spyware programs, others were detected that may not be desirable in a work environment.

These included Kazaa, iTunes, AIM Express, and BitTorrent. Benign network applications that

we were able to identify include Windows Update, McAfee Web Update, and others.

During the evaluation, there were only 45 false positives total, an average of 1.13 per day

for all 30 users. In a network with 1000 computers, this extrapolates to about 38 false positives

per day. Keep in mind, however, that this traffic is from home computers with diverse usage

patterns. Some of the false positives that arose, such as those from continually browsing a social

networking site for two hours, should be less likely in an enterprise environment. Furthermore,

we could eliminate false positives from the time-of-day filter, which generated the most false

positives, by incorporating out-of-band information about peoples’ schedules or by getting rid of

the filter altogether. Not counting the time-of-day filter, there was an average of 0.65 false

positives per day. Considering these factors, we believe the number of false positives to be

reasonable for enterprise deployment.

4.5.1 Regularity

The regularity filter results seen in Table 4.1 consisted of both count and coefficient of

variation measurements. We considered the number of false positives generated by this filter to

be acceptable (approximately one false alarm every three days). The servers that caused false

alarms hosted popular websites such as ebay.com and livejournal.com. Many of the sites flagged

by the regularity filter were found by the delay time filter as well. The regularity filter did,

however, find an additional type of spyware that the delay filter was unable to detect: browser

search bars. This particular breed of unwanted program embeds itself into the person’s browser

and calls back to its host every time the browser opens up, as well as throughout the browsing

session. These are different from other malware programs because their callbacks are triggered by

human activity and thus cannot easily be differentiated from a person based on inter-request delay

times. We successfully detected sites that used frequent requests with this filter, even if they

coincided with human usage.

4.5.2 Inter-Request Delay

For the delay time measurements, we logged website access times using one-second

granularity. The reason we did not use more precision is that none of the timers observed had

periods of less than 30 seconds. In order to detect shorter-period timers, additional precision

would be required to differentiate a timer from repeated short delay times. The false positive rate

www.manaraa.com

 62

for the delay time filter was low (an average of one false alarm every 6 days for our test group).

These false positives came from websites whose refresh mechanisms we were not able to detect

with our false positive reduction algorithm.

4.5.3 Time of Day

The time of day filter was initially configured using the one-week training period. After

seeing preliminary results, we lengthened the training time to also include the first week of the

40-day period so it was two weeks total. This increased the effectiveness of the filter, as it may

take a few weeks to accurately capture browsing patterns. It is important to note that some

automated network applications were active during the training period. We did not attempt to

remove non-human activity from the training data. The effectiveness of training could be

improved to generate more true positives by removing traffic for sites that are identified by the

other filters as receiving traffic from automated network applications. Nevertheless, we were able

to detect programs such as Gator and Wildtangent even though they had been active during the

training period. This may have been caused by post-training installation, or by changes to the

schedule of when a computer is on, but not actively used.

4.5.4 Formatting

The large number of formatting alerts can be attributed to the fact that the formatting

filter raises an alarm when it sees a bad header once for each web server per user. This means that

if iTunes were to access 10 different sites, each would generate an alarm. The whitelisting

techniques we present in chapter 6 help aggregate these duplicate alerts for known network

applications.

4.6 HTTP Tunnel Evaluation

We tested the effectiveness of the timing and formatting filters against a number of HTTP

tunnel and backdoor programs. These programs are designed to blend automated activity in with

legitimate web traffic to bypass firewalls and avoid detection. The tunneling programs that we

tested include Wsh [Dyatlov09a], Hopster [Hopster09], and Firepass [Dyatlov09b]. We also

tested a backdoor program that we designed, Tunl which allows a hacker outside the network to

remotely control a machine behind a firewall using a command-shell interface and HTTP request

callbacks.

www.manaraa.com

 63

4.6.1 Third Party HTTP Tunnels

We installed the three tunneling programs on a computer and sent out information using

each. The format filter was immediately able to detect both Wsh and Firepass because they used

custom header fields in their requests. Following its initial connection, we were unable to

successfully transfer any data using Firepass. Wsh did work properly, but did not trigger any

timing alerts because it generated requests in response to human input.

We used Hopster to tunnel traffic from AOL Instant Messenger in our experiments. It

began running at 10:30 PM and no messages were sent during the night. The next day, 10 KB of

data was sent out around Noon. Hopster was not detected immediately like Firepass and Wsh

because it copied web browser request formatting. Unlike the other two programs, Hopster did

make frequent callbacks to its server that triggered the regularity filter after 80 minutes and the

delay time filter after two hours.

4.6.2 Tunl Design

To further evaluate our system, we also designed a prototype remote shell backdoor

called Tunl. It is made to simulate the scenario where a hacker is controlling a compromised

computer that is behind a firewall with a remote command shell interface. Tunl consists of two

executables, a client, TunlCli, that runs on the compromised host, and a server, TunlServ, that

runs on run on a machine controlled by the attacker. Tunl can tunnel its traffic through an HTTP

proxy server or send its HTTP requests directly to the Internet, blending in with normal web

traffic.

The first thing TunlCli does when it starts up is launch a hidden command shell with

redefined standard input, output, and error handles. It then redirects the input and output from the

command shell to a remote console running on TunlServ using HTTP requests. In addition to

forwarding data from the command shell output, it makes periodic callbacks to check for server

commands. Custom get and put commands, which are not piped to the shell, are included in Tunl

for easy file transfers. To avoid sending too many small requests, data is buffered and sent out

every 100 milliseconds.

Although the attacker has an illusion of a command shell on the Tunl server, requests

may take a long time to execute because they are fetched by periodic TunlCli callbacks. The

server has no way of directly connecting to the client. It has to wait for a ping in the form of an

HTTP request, and then return commands in the body of an HTTP reply. Callbacks were

scheduled at one-hour intervals, with two optional retries at 30-second intervals following each

callback for failed connection attempts. Only calling back every hour ensures that Tunl generates

www.manaraa.com

 64

a low volume of HTTP requests and blends in with normal traffic. All of the messages exchanged

between the client and server match the format of an Internet Explorer web browser and a

standard-configuration Apache web server, respectively. This avoids detection by formatting

filters.

4.6.3 Tunl with Callback-Only Workload

To evaluate the performance of timing filters in this chapter, we installed the Tunl

program and monitored its traffic. The first workload we tested consisted only of callbacks to the

Tunl server (the Tunl client and server are connected, but the server did not issue commands).

This represents the time when a machine has compromised but is not actively executing

commands. The results for the Tunl client only making callbacks were promising. Even though

the client executed no commands, the traffic from this trace was caught by the request regularity,

delay time, and time-of-day filters. The 8-hour coefficient of variation filter detected the web

tunnel 6 hours and 40 minutes after the first callback. The 8-hour activity count filter was unable

to detect the backdoor. Tunl did, however, break the threshold for the 48-hour count filter after

about 26 hours. Since the backdoor was running on a timer, the delay time filter was able to

detect it in 2 hours and 10 minutes. As far as the time of day filter, the delay until detection varies

depending on the individual user’s habits as well as the time of initial callback. The time of day

filter was triggered by the backdoor very shortly after a time of usual inactivity began.

4.6.4 Minimal Workload

The second test case consisted of a hacker using the Tunl shell to go to the local

documents directory (containing approximately 180 documents), listing all the files, and

downloading a single 500-word uncompressed document with minimal formatting

(approximately 25 KB). This is a minimal activity scenario where an attacker only lists one

directory and downloads a single small file. This workload triggered the delay time and request

regularity filters. In the presence of more concentrated activity associated with the file transfer,

however, the backdoor was harder to detect using the coefficient of variation regularity

measurement. Instead of detecting Tunl in around 7 hours, the coefficient of variation

measurement did not pass the threshold until after the file transfer activity was beyond the 8-hour

measurement window.

www.manaraa.com

 65

4.6.5 Moderate Workload

The third test case involved a moderately intensive remote shell session. We listed all

local document and desktop directories for one user on the machine. Following the directory list

requests, we compressed and downloaded a variety of files including two income tax returns

(PDF format), one JPG image, three small Word documents, and a text file containing a 1000-

address mailing list. The moderate workload generated the same alerts as the minimal workload

in the same amount of time. The moderate workload did take longer than the minimal workload

to complete, but the difference was between two minutes and ten minutes of transfer activity,

which was too short to have any noticeable effect on the 5-minute-granulatiy regularity

measurements.

4.7 Filter Vulnerabilities

Although the filters presented in this chapter are very effective at identifying non-browser

network applications, it is still possible to avoid them and impersonate human web browsing. For

each type of filter, here are steps that malware could take to evade detection:

• Delay Time Filter – Randomize callbacks so as to not exceed thresholds (though this can

still trip time-of-day filter, if the user is not usually active at that time.)

• Time-of-day Filter – Schedule requests when a user is normally active by monitoring user

activity (though this increases the risk of detection by the user).

• Request Regularity Filter – If the thresholds are known, this filter can be avoided by

computing regularity and staying below them. In general, constraining regularity to that of

a typical legitimate website will avoid detection, but it will also restrict the amount of time

during which a malicious network application can communicate with its host.

• Message Formatting – This filter is much easier to avoid; one only has to mimic the

formatting of requests from the web browser installed on the compromised machine.

However, using the right browser version is important. If malware mimics a browser that is

not installed on any computer in an enterprise network, it may still be detected by message

formatting analysis

Despite these filter vulnerabilities, we believe that the filters presented in this chapter

significantly raise the bar for malicious software that wishes to avoid detection by blending in

with normal web traffic. Furthermore, these algorithms will effectively identify legitimate non-

browser network applications and unwanted applications, such as file sharing programs, which do

not actively try to escape detection.

www.manaraa.com

 66

4.8 Conclusion and Future Work

In this chapter, we demonstrated methods for differentiating automated network

application traffic from normal browsing. These methods are based on observations from real

traffic from 30 users during a one-week training period. The first set of techniques focus on

request timing characteristics. The delay between requests, their regularity, and the time of day at

which they occur serve as a good differentiator between human and automated activity. We also

presented methods for classifying non-browser network application traffic by looking at the

formatting of requests. In particular, customized header fields and the client-specified “User-

Agent” field can uniquely identify many network applications.

For our evaluation, we ran the resulting timing and formatting filters on real traffic from

30 users over a 40-day period. The filters were effective in identifying traffic from seventeen non-

browser network applications, six of which were spyware. They also had a low false positive rate

of approximately one per day for the duration of the evaluation. We also tested the filters against

applications known as HTTP tunnels that are specifically designed to avoid detection and bypass

firewalls. The formatting filters immediately detected two of three publicly available HTTP

tunnels, and timing filters detected the third after 80 minutes. We also created and tested a custom

HTTP tunnel that was quieter than publicly available tunnel programs. The timing algorithms

were able to identify this custom tunnel after approximately two hours.

In the future, we hope to extend the formatting analysis techniques to take the current

browsing session state into account. The formatting filters we present here look at all requests

regardless of what pages the client has loaded in the past. If we also take browsing session state

into account, then we can flag requests that exhibit inconsistencies with normal browser behavior

and may be malicious (e.g., submitting a POST request to a URL to which there are no links from

previous pages). This would require browser session state tracking and in-depth analysis of

HTML and Javascript in server replies. However, it would greatly enhance security by preventing

spyware from directly leaking information to any server that does not have a link from a currently

open page.

www.manaraa.com

 67

CHAPTER 5

QUANTIFYING INFORMATION LEAKS
IN OUTBOUND WEB TRAFFIC

5.1 Overview

Network-based information leaks pose a serious threat to confidentiality. They are the

primary means by which hackers extract data from compromised computers. The network can

also serve as an avenue for insider leaks, which, according to a 2007 CSI/FBI survey, are the

most prevalent security threat for organizations [Richardson07]. Because the volume of legitimate

network traffic is so large, it is easy for attackers to blend in with normal activity, making leak

prevention difficult. In one experiment, a single computer that was browsing a social networking

site for 30 minutes generated over 1.3 MB of legitimate request data—the equivalent of about

195,000 credit card numbers. Furthermore, manually analyzing network traffic for leaks would be

unreasonably expensive and error-prone. Due to the heavy volume of normal traffic, limiting

network traffic based on the raw byte count would only help stop large information leaks.

In response to the threat of network-based information leaks, researchers have developed

data-loss prevention (DLP) systems [RSA07, Vontu09]. DLP systems work by searching through

outbound network traffic for known sensitive information, such as credit card and social security

numbers. Some even catalog sensitive documents and look for excerpts in outbound traffic.

Although they are effective at stopping accidental and plain-text leaks, DLP systems are

fundamentally unable to detect obfuscated information flows. They leave an open channel for

leaking data to the Internet.

This chapter introduces a new approach for precisely quantifying information leak

capacity in network traffic. Rather than searching for known sensitive data—an impossible task in

the general case—we aim to measure and constrain its maximum volume. This research addresses

the threat of a hacker or malicious insider extracting sensitive information from a network. He or

she could try to steal data without being detected by hiding it in the noise of normal outbound

www.manaraa.com

 68

traffic. For web traffic, this often means stashing bytes in paths or header fields within seemingly

benign requests. To combat this threat, we exploit the fact that a large portion of legitimate

network traffic is repeated or constrained by protocol specifications. This fixed data can be

ignored, which isolates real information leaving a network, regardless of data hiding techniques.

The leak measurement techniques presented here focus on the Hypertext Transfer

Protocol (HTTP), the main protocol for web browsing. They take advantage of HTTP and its

interaction with Hypertext Markup Language (HTML) documents and Javascript code to quantify

information leak capacity. The basic idea is to compute the expected content of HTTP requests

using only externally available information, including previous network requests, previous server

responses, and protocol specifications. From the perspective of information theory, this expected

content is equivalent to the signal distribution. The amount of unconstrained outbound

bandwidth, which is equivalent to background entropy, is equal to the edit distance (edit distance

is the size of the edit list required to transform one string into another) between actual and

expected requests, plus timing information. Given correct assumptions about timing channel

characteristics, these results may overestimate, but will never underestimate the true size of

information leaks, thus serving as a tight upper bound on information leakage.

One option for measuring unconstrained bandwidth would be to use a traditional

compression algorithm like gzip [Gailly08], bzip2 [Seward07], or lzma [Pavlov09]. This would

involve building up a library from previous messages and only counting the incremental size of

new requests. Traditional compression can help for simple requests that have large repeated

substrings. However, this protocol-agnostic approach fails to capture complex interactions

between requests and replies that go beyond string repetition.

 0

 20

 40

 60

 80

 100

 120

 140

 160

10:00 12:00 14:00 16:00 18:00 20:00

B
a
n
d
w

id
th

 -
 R

a
w

 (
K
B
/m

in
)

Time of day

Information Leak
Normal Traffic

 0

 1

 2

 3

 4

 5

 6

10:00 12:00 14:00 16:00 18:00 20:00

B
a
n
d
w

id
th

 -
 P

re
ci

se
 (

K
B
/m

in
)

Time of day

Information Leak
Normal Traffic

 (a) (b)

Figure 5.1. Graph of outbound web traffic during a typical work day with a 100 Kilobyte
information leak inserted. (a) shows the raw byte count, where the leak is barely noticeable, and

(b) shows the precise unconstrained bandwidth measurement, in which the leak stands out prominently.

www.manaraa.com

 69

The analysis techniques presented in this chapter take advantage of protocol interactions.

Parsing all of the links on a web page, for example, helps construct an accurate distribution of

expected requests. Our analysis also involves executing scripts in a simulated browser

environment to extract links that cannot be derived from static processing. These improvements

lead to a much more precise measurement of information in outbound web traffic than

conventional compression algorithms.

Figure 5.1 illustrates the benefit of precise leak quantification. The graphs show

bandwidth from legitimate web browsing over a one-day period in black. A 100 KB information

leak was inserted into the traffic and can be seen in a lighter color. This leak was deliberately

inserted in short bursts, so as to more closely resemble legitimate web traffic and avoid detection

methods that look at request regularity, which are discussed in Chapter 4. The left graph shows

raw request bandwidth. The leak is barely noticeable here and easily blends in with the noise of

normal activity. After running the same traffic through our unconstrained bandwidth

measurement engine, however, the leak stands out dramatically from normal traffic. It is

important to note that more accurate traffic measurement does not completely stop information

leaks from slipping by undetected; it only makes it possible to identify smaller leaks. Our analysis

techniques force a leak that would normally blend in with a week’s worth of traffic to be spread

out over an entire year.

We evaluated our leak measurement techniques on real browsing data from 10 users over

30 days, which included over 500,000 requests. The results were compared to a simple

calculation described in prior research [Borders04], and to incremental gzip compression

[Gailly08]. The average request size using the leak measurement techniques described in this

chapter was 15.8 bytes, 1.5% of the raw byte count. The average size for gzip was 132 bytes, and

for the simple measurement was 243 bytes. The experiments show that our approach is an order

of magnitude better than traditional gzip compression.

This work focuses specifically on analyzing leaks in HTTP traffic for a few reasons.

First, it is the primary protocol for web browsing and accounts for a large portion of overall

traffic. Many networks, particularly those in which confidentiality is a high priority, will only

allow outbound HTTP traffic and block everything else by forcing all traffic to go through a

proxy server. In this scenario, HTTP would be the only option for directly leaking data. Another

reason for focusing on HTTP is that a high percentage of its request data can be filtered out by

eliminating repeated and constrained values.

The principles we use to measure leaks in HTTP traffic are likely to work for other

protocols as well. Binary protocols for instant messaging, secure shell access, and domain name

www.manaraa.com

 70

resolution all contain a number of fixed and repeated values. Furthermore, correlation between

protocols may enable filtering of DNS lookups. Extending a similar methodology to outbound

SMTP (e-mail) traffic is likely to be more challenging. E-mail primarily consists of free-form

data and only contains small fixed fields. However, the unconstrained data in e-mails is usually

text, for which there are well-known methods of determining the information content

[Shannon51], or file attachments. These attachments are made up of data written out in a specific

file format, which could be analyzed in a manner similar to HTTP. In fact, researchers have

already examined ways of identifying information that has been hidden in files with

steganography by looking for additional unexpected entropy [Anderson98]. Further investigation

of leak measurement techniques for file attachments and other protocols is future work.

The measurement techniques in this chapter do not provide an unconstrained bandwidth

measurement for fully encrypted traffic. (If a hacker tries to hide or tunnel encrypted data in an

unencrypted protocol, it can be measured.) All networks that allow outbound encrypted traffic

must deal with this fundamental problem, and we do not try to solve it here. If confidentiality is a

top priority, there are a few possibilities for obtaining original plain text. One is to force all

encrypted traffic through a gateway that acts as a man-in-the-middle on each connection. This can

be achieved by designating the gateway as a local certification authority and having it rewrite

certificates. Another option is to deploy an agent on every host in the network that reports

encryption keys to a monitoring system. With this approach, any connections that cannot be

decrypted are subsequently blocked or flagged for further investigation.

The leak measurement techniques presented in this chapter do not constitute an entire

security solution, but rather act as a tool. We envision the primary application of this work to be

forensic analysis. One could filter out almost all legitimate activity, making it faster and easier to

isolate leaks. Another application would be intrusion detection. Additional research would be

required to determine appropriate thresholds and optimize the algorithms for handling large

volumes of traffic.

The remainder of this chapter is laid out as follows. Section 5.2 discusses related work.

Section 5.3 poses a formal problem description. Section 5.4 talks about static message analysis

techniques. Section 5.5 describes dynamic content analysis methodology. Section 5.6 outlines an

approach for quantifying timing information. Section 5.7 presents evaluation results. Section 5.8

discusses potential strategies for mitigating entropy and improving analysis results. Finally,

section 5.9 concludes and suggests future research directions.

www.manaraa.com

 71

5.2 Related Work

There are numerous techniques for controlling information flow within a program. Jif

[Myers01] ensures that programs do not leak information to low-security outputs by tainting

values with sensitive data. More recent work by McCamant et al. [McCamant08] goes one step

further by quantifying amount of sensitive data that each value in a program can contain.

Unfortunately, intra-program flow control systems rely on access to source code, which is not

always feasible. They do not protect against compromised systems. The algorithms in this chapter

take a black box approach to measuring leaks that makes no assumptions about software integrity.

Research on limiting the capacity of channels for information leakage has traditionally

been done assuming that systems deploy mandatory access control (MAC) policies [Brand85] to

restrict information flow. However, mandatory access control systems are rarely deployed

because of their usability and management overhead, yet organizations still have a strong interest

in protecting confidential information.

A more recent system for controlling information flow, TightLip [Yumerefendi07], tries

to stop programs from leaking sensitive data by executing a shadow process that does not see

sensitive data. Outputs that are the same as those of the shadow process are treated normally, and

those that are different are marked confidential. TightLip is limited in that it relies on a trusted

operating system, and only protects sensitive data in files. In comparison, our leak measurement

methods will help identify leaks from a totally compromised computer, regardless of their origin.

A popular approach for protecting against network-based information leaks is to limit

where hosts can send data with a content filter, such as Websense [Websense09]. Content filters

may help in some cases, but they do not prevent all information leaks. A smart attacker can post

sensitive information on any website that receives input and displays it to other clients, including

useful sites such as www.wikipedia.org. We consider content filters to be complimentary to our

measurement methods, as they reduce but do not eliminate information leaks.

Though little work has been done on quantifying network-based information leaks, there

has been a great deal of research on methods for leaking data. Prior work on convert network

channels includes embedding data in IP fields [Cabuk04], TCP fields [Servetto01], and HTTP

protocol headers [Castro06]. The methods presented in this chapter aim to quantify the maximum

amount of information that an HTTP channel could contain, regardless of the particular data

hiding scheme employed.

Other research aims to reduce the capacity of network covert channels by modifying

packets. Network “pumps” [Kang95] and timing jammers [Giles03] control transmission time to

www.manaraa.com

 72

combat covert timing channels. Traffic normalizers (also known as protocol scrubbers) will

change IP packets in flight so that they match a normal format [Handley01, Malan00]. Glavlit is

an application-layer protocol scrubber that focuses specifically on normalizing HTTP traffic from

servers [Schear06]. Traffic normalization helps eliminate covert storage channels by fixing

ambiguities in network traffic. Research on normalizing network traffic to reduce covert channel

capacity is complimentary to our work, which focuses only on quantifying information content.

Compression algorithms have been the subject of much research in the information

theory community. Popular compression algorithms, such as gzip [Gailly08], bzip2 [Seward07],

and lzma [Pavlov09], combine techniques from prior research to achieve fast and efficient

compression. Gzip and bzip2 use Huffman coding to exploit redundancy at the byte level

[Huffman52]. All three of the popular compression algorithms use a variant of the algorithms

introduced by Lempel and Ziv for compressing repeated data strings [Ziv77]. The lzma

algorithm, which usually has the best compression ratio [Morse05], also applies a “Range”

algorithm, which is similar to arithmetic coding [Rissanen79]. Despite improvements from more

clever compression methods, non of these algorithms can achieve the same level of compression

as the techniques presented in this chapter, because they do not have knowledge of HTTP,

HTML, and Javascript. Complex interactions on web pages—including the execution of code—

are not exploited by generic compression algorithms.

5.3 Problem Description

This chapter addresses the problem of quantifying network-based information leak

capacity by isolating information from the client in network traffic. We will refer to information

originating from the client as UI-layer input. From a formal perspective, the problem can be

broken down to quantifying the set U of UI-layer input to a network application given the

following information:

• I – The set of previous network inputs to an application.

• O – The set of current and previous network outputs from an application.

• A – The application representation, which is a mapping: U × I → O of UI-layer information

combined with network input to yield network output.

By definition, the set I cannot contain new information from the client because it is

generated by the server. In this work, the application representation A is based on protocol

specifications, but it could also be derived from program analysis. In either case, it does not

contain information from the client. Therefore, the information content of set O can be reduced to

www.manaraa.com

 73

the information in the set U. If the application has been tampered with by malicious software

yielding a different representation A’, then the maximum information content of tampered output

O’ is equal to the information content of the closest expected output O plus the edit distance

between O and O’. Input supplied to an application from all sources other than the network is

considered part of U. This includes file uploads and system information, such as values from the

random number generator. Timing information is also part of the set U.

5.4 Static Content Analysis

This section describes methods for measuring the amount of information in outbound

HTTP requests by statically analyzing previous requests and responses. Some portions of the

request headers are fixed and can be immediately filtered if they contain the expected values.

Most of the header fields only change on rare occasion and can be discounted if they are the same

as previous requests. The request path, which identifies resources on the web, is usually derived

from previous HTML pages returned by the server. Filtering out repeated path values requires

comparing paths to those in both prior requests and responses. Also, HTTP form post requests

reference field names and default values contained in HTML pages. This section elaborates on

methods for extracting expected HTTP request fields from static content.

1 POST /download HTTP/1.1
2 Host: www.example.com
2 User-Agent: Mozilla/5.0 (Windows; U; Windows
NT 5.1; en-US; rv:1.8.1.12) Gecko/20080201
Firefox/2.0.0.12

2 Keep-Alive: 300
2 Connection: keep-alive
2 Referer: http://www.example.com/download.html
2 Content-Type: application/x-www-form-
urlencoded

2 Content-Length: 73
3 FirstName=John&LastName=Doe&Email=johndoe%40e
xample.com&Submit=Download

<html>
<body>
 <form action=”/download” method=”post”>
 <input type=”text” name=”FirstName”>
 <input type=”text” name=”LastName”>
 <input type=”text” name=”Email”>
 <input type=”submit” value=”Download”>
 </form>
</body>
</html>

 (a) (b)

Figure 5.2 (a) A sample HTTP POST request for submitting contact information to
download a file. Line 1 is the HTTP request line. Lines marked 2 are request headers, and
line 3 is the request body. Bytes counted by a simple algorithm are highlighted in gray.

UI-layer data is highlighted in black with white text. (b) A sample HTML document
at http://www.example.com/download.html that generated request (a).

www.manaraa.com

 74

5.4.1 HTTP Request Overview

There are two main types of HTTP requests used by web browsers, GET and POST. GET

typically obtains resources and POST sends data to a server. An example of a HTTP POST

request can be seen in Figure 5.2. This request is comprised of three distinct sections: the request

line, headers, and the request body. GET requests are very similar except that they do not have a

request body. The request line contains the path of the requested file on the server, and it may

also have script parameters. The next part of the HTTP request is the header field section, which

consists of “<field>: <value>” pairs separated by line breaks. Header fields relay information

such as the browser version, preferred language, and cookies. Finally, the HTTP request body

comes last and may consist of arbitrary data. In the example message, the body contains an

encoded name and e-mail address that was entered into a form.

5.4.2 HTTP Header Fields

The first type of HTTP header field that we examine is a fixed header field. Fixed

headers should be the same for each request in most cases. Examples include the preferred

language and the browser version. We only count the size of these headers for the first request

from each client, and count the edit distance from the most recent request on subsequent changes.

Here, we treat all HTTP headers except for Host, Referer, and Cookie as fixed. Some of these

header fields, such as Authorization, may actually contain information from the user. When these

fields contain new data, we again count the edit distance with respect to the most recent request.

Next, we look at the Host and Referer header fields. The Host field, along with the

request path, specifies the request’s uniform resource locator (URL). We only count the size of

the Host field if the request URL did not come from a link in another page. Similarly, we only

count the Referer field’s size if does not contain the URL of a previous request.

Finally, we examine the Cookie header field to verify its consistency with expected

browser behavior. The Cookie field is supposed to contain key-value pairs from previous server

responses. Cookies should never contain UI-layer information from the client. If the Cookie

differs from its expected value or we do not have a record from a previous response (this could

happen if a mobile computer is brought into an enterprise network, for example), then we count

the edit distance between the expected and actual cookie values. At least one known tunneling

program, Cooking Channel [Castro06], deliberately hides information inside of the Cookie header

in violation of standard browser behavior. The techniques presented here correctly measure

outbound bandwidth for the Cooking Channel program.

www.manaraa.com

 75

5.4.3 Standard GET Requests

HTTP GET requests are normally used to retrieve resources from a web server. Each

GET request identifies a resource by a URL that is comprised of the server host name, stored in

the Hostname header field, and the resource path, stored in the request line. Looking at each

HTTP request independently, one cannot determine whether the URL contains UI-layer

information or is the result of previous network input (i.e., a link from another page). If we

consider the entire browsing session, however, then we can discount request URLs that have been

seen in previous server responses, thus significantly improving unconstrained bandwidth

measurements.

The first step in accurately measuring UI-layer information in request URLs is

enumerating all of the links on each web page. We parse HTML, Cascading Style Sheet (CSS),

and Javascript files to discover static link URLs, which can occur in many different forms. Links

that are written out dynamically by Javascript are covered in section 5.5. Examples of static

HTML links include:

• Click Here!

• <link rel=stylesheet type=”text/css” href=”style.css”>

•

• And the less common: <script src=”//test.com/preload.jpg”>

These examples would cause the browser to make requests for “page”, “style.css”,

“image.jpg”, and “preload.jpg”, respectively.

After the set of links has been determined for each page, we can measure the amount of

UI-layer information conveyed by GET requests for those link URLs. The first step is identifying

the link’s referring page. HTTP requests typically identify the referrer in a header field. If the

referrer is found, then the request URL is compared against a library of mandatory and voluntary

links on the referring page. Mandatory links are those that should always be loaded unless they

are cached by the browser, such as images and scripts. The set of mandatory links is usually

smaller and more frequently loaded. Voluntary links are those that the browser will not load

unless the user takes some action, such as clicking on a link. Voluntary links tend to be more

numerous and are loaded less often. Finally, if a request does not identify the referrer or the

referring page cannot be found, then we must go to the library of all previously seen links to look

for a match.

Once a matching link from one of the three groups (mandatory, voluntary, or all) has

been found, the amount of information in the request is measured as the sum of:

• 2 bits to identify the link group

www.manaraa.com

 76

• Log(n) bits to identify the link within the group, where n is the total number of links in the

group

• The edit distance from the link URL to the actual request URL if it is not an exact match

For approximate matches, calculating the edit distance from all URLs would be

prohibitively expensive. Instead we select only a few strings from which to compute the edit

distance, and then take the best answer. This pre-selection is done by finding strings with the

longest shared substring at the beginning. Our original plan for mandatory links was to not count

any data if all the mandatory links were loaded in order. This works in a controlled environment,

but our experiments showed that local caching prevents the browser from loading most of the

mandatory links in many cases. A simpler and more effective approach is to independently count

the link information in each request. This includes information conveyed by the client about

whether it has each object in its cache.

5.4.4 Form Submission Requests

The primary method for transmitting information to a web server is form submission.

Form submission requests send information that the user enters into input controls, such as text

boxes and radio buttons. They may also include information originating from the server in hidden

or read-only fields. Form submissions contain a sequence of delimited <name, value> pairs,

which can be seen in the body of the sample POST request in Figure 5.2a. The field names, field

ordering, and delimiters between fields can be derived from the page containing the form, which

is shown in Figure 5.2b, and thus do not convey UI-layer information. Field values may also be

taken from the encapsulating page in some circumstances. Check boxes and radio buttons can

transmit up to one bit of information each, even though the value representing “on” can be several

bytes. Servers can also store client-side state by setting data in “hidden” form fields, which are

echoed back by the client upon form submission. Visible form fields may also have large default

values, as is the case when editing a blog post or a social networking profile. For fields with

default values, we measure the edit distance between the default and submitted values. We

measure the full size of any unexpected form submissions or form fields, which may indicate an

attempt to leak data.

5.5 Dynamic Content Analysis

Very few websites today are free from active content. This poses a challenge for leak

measurement because such content may generate HTTP requests with variable URLs. The data in

www.manaraa.com

 77

these requests might still be free from UI-layer information, but making this determination

requires dynamic content analysis. This section describes methodology for processing and

extracting expected HTTP request URLs from active web content.

5.5.1 Javascript

The most popular language for dynamic web page interaction is Javascript, which is

implemented by almost all modern browsers. Javascript has full access to client-side settings,

such as the browser version and window size, which help it deliver the most appropriate content

to the user. On many websites, Javascript will dynamically construct link URLs. These URLs

cannot be extracted from simple parsing. One must execute the Javascript to obtain their true

values.

The leak analysis engine includes a Javascript interpreter, SpiderMonkey [Mozilla09b],

to handle dynamic link creation. When processing an HTML document, the analysis engine first

extracts static links as described in the previous section, and then executes Javascript code. A

large portion of links that Javascript generates are written out during the page load process. This

includes tracking images, advertisements, embedded media content, and even other scripts. The

analysis engine executes Javascript as it is encountered in the HTML document in the same way

as a web browser. This includes complex chaining of script tags using both the “document.write(

‘<script…’)” method, and the “node.addChild(document.createElement(‘script’))” method.

When scripts add HTML or DOM nodes to the document, the analysis engine processes the new

document text, looking for newly created links. Executing scripts allows the engine to see a large

set of links that are unrecoverable with static parsing.

5.5.2 The DOM Tree

Javascript is a stand-alone language that only has a few built-in types and objects. Most

of the rich interface available to scripts inside of web pages is defined by the web browser as part

of the Document Object Model (DOM). All of the elements in an HTML document are accessible

to Javascript in a DOM tree, with each tag having its own node. Correctly emulating the DOM

tree is important for accurate analysis because many scripts will manipulate the tree to generate

links. For example, it is common for scripts to create new “Image” nodes and directly set their

URLs. Advertisers also tend to use complex Javascript code to place ads on pages, often going

through multiple levels of DOM node creation to load additional scripts. This presumably makes

it harder for hackers to replace the advertisements, and for website owners to commit click fraud.

www.manaraa.com

 78

To obtain an accurate DOM tree representation, our analysis engine parses each HTML

element and creates a corresponding DOM node. This DOM tree is available during script

execution. We modeled the interface of our DOM tree after Mozilla Firefox [Mozilla09a].

Updating the DOM tree to also reflect the quirks of other browser DOM implementations is

future work. Because we only care about data in HTTP requests and not actually rendering the

web page, our DOM tree does not fully implement style and layout interfaces. Ignoring these

interfaces makes our DOM implementation simpler and more efficient. The DOM tree also

contains hooks for calls that cause the browser to add links to a page. When a script makes such a

call, the engine adds the new link URL to either the mandatory or voluntary link library,

depending on the parameters. The engine can then filter subsequent HTTP requests that match the

dynamically created link URL.

Another option for achieving correct DOM interactions would have been to render

HTML and Javascript in a real web browser. We chose not to do this for a few reasons. The first

is efficiency. Analyzing every page in a real web browser would require setting up a dummy

server to interact with the browser through the local network stack. The browser would also

render the entire page and make requests to the dummy server. This adds a significant amount of

unnecessary overhead. Our analysis engine cuts out this overhead by directly parsing pages and

only emulating parts of the DOM tree that are relevant to leak measurement. A custom DOM tree

implementation also makes instrumenting and manipulating of the Javascript interpreter much

easier. For example, tweaking the system time or browser version presented to Javascript would

require non-trivial patches to a real browser.

5.5.3 Plug-ins and Other Dynamic Content

Javascript is not the only language that enables rich web interaction and can dynamically

generate HTTP requests. Popular browser plug-ins like Java [Sun09] and Flash [Adobe09] also

have such capabilities. In fact, Java Applets and Flash objects are even more powerful than

Javascript. Taking things a step further, stand-alone executable programs may make HTTP

requests as well. These applications are free to interact with the user, the local system, and the

network in any way that they please.

Correctly extracting all possible links from plug-in objects and executables is

undecidable in the general case. This work does not try to analyze plug-ins or dynamic content

other than Javascript. In the future, we hope to make some gains by executing plug-in objects in a

controlled environment and monitoring their output. It may also be possible to achieve some

www.manaraa.com

 79

improvement through deep inspection and understanding of plug-in objects, but doing so yields

diminishing returns because of their complexity and diversity.

Instead of examining dynamic content for plug-in objects, we look at previous requests to

create a library of expected URLs. The leak measurement engine compares new HTTP requests

that do not match a browser link to the set of all prior requests. The closest link is determined by

computing the shortest edit distance from a few candidate requests that have the longest matching

substring at the beginning. This approach is an effective approximation for finding the closest

URL because similar URL strings are much more likely to have common elements at the

beginning. The resulting information content is equal to log(m), where m is the size of the library

of prior requests, plus the edit distance with respect to the similar prior request, plus two bits to

indicate that the request is compared to the library of prior requests and did not come from a link

on a web page. In practice, many custom web requests are similar to previous requests. For

example, RSS readers and software update services repeatedly send identical requests to check

for new data. We can effectively filter most of these messages when measuring information leaks.

5.6 Request Timing Information

In addition to data in the request, HTTP messages also contain timing information. The

moment at which a request occurs could be manipulated by a clever adversary to leak

information. It is important to consider the bandwidth of timing channels when measuring

information leaks. This is especially true for the precise unconstrained measurement techniques in

this chapter because they may yield sizes of only a few bits per request in some cases.

The amount of timing information in a request stream is equal to the number of bits

needed to recreate the request times as seen by the recipient, within a margin of error. This

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600

P
(t

<
=

x
)

Seconds

Figure 5.3 Cumulative distribution of delay times for all observed HTTP requests.
 P(t<=3) = .794, P(t<=192) = .976, P(t<=3600) = .9996.

www.manaraa.com

 80

margin of error is known as the timing interval. It is a short length of time during which the

presence of a request indicates a ‘1’ bit, and the absence of a request indicates ‘0’. Using a shorter

interval increases the capacity of a timing channel, but also increases the error rate. Previous

research on IP covert timing channels found 0.06 seconds to be an effective value for the timing

interval in one case [Cabuk04]. This equates to about 16.6 intervals per second.

Prior work on network timing channels looks at IP packets [Cabuk04]. Cabuk et al.

describe a channel where IP packets are sent during timing intervals to indicate ‘1’ bits. HTTP

requests differ from IP packets in that they tend not to occur as closely together. Instead of having

a regular stream of messages throughout a connection, web requests occur in short bursts during

page loads, and then at long intervals in between pages. For normal HTTP traffic, we have a

sparse timing channel in which a vast majority of the intervals are empty.

For a sparse channel, the timing information in each HTTP request is equal to the bits

needed to indicate how many empty intervals have occurred since the last request. The

cumulative distribution of inter-request delays for our experiments can be seen in Figure 5.3. This

shows that that 80% of HTTP requests occur within three seconds of each other, while 95% of

requests occur within a minute and a half. Using a variable-length encoding scheme with the first

2–6 bits indicating the length, we can count the timing information in each request as follows

(assuming 16 intervals per second):

• Last request <= 3 seconds: 6 value bits

• Last request <= ~100 seconds: 11 value bits + 2 length bits

• Last request <= ~50 Minutes: 16 value bits + 4 length bits

• Last request in past 5 years: 32 value bits + 6 length bits

This encoding provides a reasonable approximation of the information content in the

timing of each request. It is important to note that these figures depend on the number of timing

intervals per second. If an attacker can view messages close to the source network, then there may

be more than sixteen intervals per second. On the other hand, if a web proxy is configured to

Scenario # Reqs Raw bytes Simple bytes/% Gzip bytes/% Precise bytes/% Avg. Req. Size
Sports News 911 1,188,317 199,857 / 16.8% 116,650 / 9.82% 13,258 / 1.12% 14.5 bytes

Social Net. 1,175 1,404,268 92,287 / 6.57% 97,806 / 6.96% 12,805 / 0.91% 10.9 bytes

Shopping 1,530 914,420 158,076 / 17.3% 85,461 / 9.35% 6,157 / 0.67% 4.0 bytes

News 547 502,638 74,927 / 14.9% 51,406 / 10.2% 3,279 / 0.65% 6.0 bytes

Web Mail 508 620,065 224,663 / 36.2% 97,965 / 15.8% 3,964 / 0.64% 7.8 bytes

Blog 136 81,162 10,182 / 12.5% 5,534 / 6.82% 262 / 0.32% 1.9 bytes

Table 5.1 Bandwidth measurement results for six web browsing scenarios using four different
measurement techniques, along with the average bytes/request for the precise technique.

www.manaraa.com

 81

increase request jitter, then the number of viable time intervals per second may be less than

sixteen.

In this chapter, we assume that HTTP requests are going through a layer-7 proxy or

gateway for our timing channel measurements. This means that the only meaningful time is at the

start of the request. The timing of subsequent IP packets is controlled by the proxy, not the client,

under normal conditions. We believe the presence of a proxy is a reasonable assumption for

timing channel measurements. Organizations that care enough about leaks to measure covert

timing channels should already have a web proxy in place to mediate outbound information flow

(e.g., with data-loss prevention systems [RSA07, Vontu09]).

5.7 Evaluation

We applied the leak measurement techniques described in this paper on web traffic from

a controlled environment, and on real web browsing data. The controlled tests involved six 30-

minute browsing sessions at different types of websites using a single browser. The real web

traffic was collected from ten different people using a variety of browsers and operating systems

over a 30-day period. Only data from the controlled scenarios was used for developing the leak

measurement engine. None of the live traffic results were used to modify or improve our analysis

techniques. We compared the results of our precise unconstrained analysis to incremental gzip

compression, simple request analysis, and raw byte counts. The gzip tests involved measuring the

amount of new compressed data for each request when using a gzip compression stream that has

seen all prior requests and responses. The simple analysis is a technique described in prior

research [Borders04] that is stateless and just throws out expected request headers. This section

presents our evaluation results, discusses limitations of our approach, and briefly summarizes

performance results.

5.7.1 Controlled Tests

We first evaluated our leak quantification techniques on browsing traffic from controlled

scenarios. The scenarios were 30-minute browsing sessions that included web mail (Yahoo),

social networking (Facebook), news (New York Times), sports (ESPN), shopping (Amazon), and

a personal blog website. The results are shown in Table 5.1. The precise unconstrained leak

measurements for all of the scenarios were much smaller than the raw byte counts, ranging from

0.32–1.12% of the original size.

www.manaraa.com

 82

The results were best for the blog scenario because the blog website contained only one

dynamic link. The analysis engine was able find an exact match for all of the other requests. Of

the 262 bytes that were present in the blog scenario, 118 (45%) of them were from timing

information, 86 (33%) from link selection, 48 (18%) from text entered by the user, and 10 (4%)

from a Javascript link that contained a random number to prevent caching. The blog scenario

represents a near ideal situation for our measurement techniques because we were able to find an

exact URL match for all but one request. The resulting average of a few bytes per request serves

as a lower bound for standard HTTP traffic. This traffic must at least leak timing and link

selection information.

The shopping, news, and web mail scenarios all showed similar precise measurement

results. Each of these websites contained a large number of dynamically constructed links that

were processed correctly. However, dynamic links often contain information from the client

computer. Examples include the precise system time at execution, browser window dimensions,

and random numbers to prevent caching. This information must be counted because it cannot be

determined by looking at previous requests and responses. From a hacker’s point of view, these

fields would be a good place to hide data. Opaque client-side state information was particularly

prevalent in links for advertisements and tracking images on the shopping, news, and web mail

sites.

Precise unconstrained bandwidth measurements for the social networking and sports

news scenarios were the highest. The social networking website (Facebook.com) relied heavily

on Active Javascript and XML (AJAX) requests that constructed link URLs in response to user

input. Because the analysis engine did not trigger event handlers, it was unable to extract these

links. The sports news website (ESPN.com) contained a number of Flash objects that dynamically

fetched other resources from the web. The analysis engine could not discount these links because

it did not process the plug-in objects. In the future, the engine could improve analysis accuracy by

obtaining and replaying hints about input events that trigger AJAX requests and dynamic link

URLs from agents running the clients. These agents need not be trusted, because incorrect hints

would only increase the unconstrained bandwidth measurement.

Gzip compression [Gailly08] was more effective than simple request analysis for all but

one of the controlled test cases, but fell far short of the compression level achieved by precise

analysis. By running previous requests and responses through the compression stream, gzip was

able to discount 84-93% of raw data. URLs and HTTP headers are filled with strings that appear

elsewhere in previous requests or responses, giving gzip plenty of opportunities for compression.

One benefit that gzip actually has over precise analysis, which was not enough to make a big

www.manaraa.com

 83

difference, is that it compresses UI-layer data. Our analysis engine will count the full size of a

blog comment, for example, while gzip will compress the comment. Running unconstrained bytes

through an additional compression algorithm on the back end may help to further improve precise

unconstrained bandwidth measurements in the future.

We did not test generic compression algorithms other than gzip, but would expect only

somewhat better results (not an order-of-magnitude improvement). Without protocol-specific

processing, compression algorithms are limited in how effective they can be at discounting

constrained information.

5.7.2 Quantifying Information in Real Web Traffic

We collected web traffic from 10 users over the course of a month to evaluate our leak

measurement techniques. Unlike the controlled scenarios, this traffic came from a variety of web

browsers, including Firefox, Internet Explorer, Safari, and Chrome. The traffic consisted of

normal daily activity from the volunteers, who consisted of co-workers, friends, and family. The

data included 507,505 requests to 7052 unique hosts totaling 475 MB. We also recorded 2.58 GB

of response data, not including images, videos, or other binary objects. The web mail request

bodies were also ignored to protect privacy. To the best of our knowledge, the collected web

traffic did not contain any information leaks from spyware or unusually large uploads that would

have negatively skewed the results.

We ran the leak measurement algorithms on the real web traffic one user at a time (the

results do not exploit request similarities between users). We first computed the distribution of

measured sizes across all requests. Figure 5.4a shows the probability density function of request

sizes for raw, simple, gzip, and precise measurements. The precise unconstrained bandwidth

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1 10 100 1000

P
(X

=
n
)

Bytes

Precise
Gzip

Simple
Raw

 0.001

 0.01

 0.1

 1

 0 20 40 60 80 100

P
(X

=
n
)

Percentage of Raw

Precise
Gzip

Simple

 (a) (b)
Figure 5.4 (a) The distribution of precise, gzip, simple, and raw request byte counts for real web traffic.

(b) Distribution of request byte counts as percentage of raw for precise, gzip, and simple algorithms.

www.manaraa.com

 84

measurement algorithm dramatically outperformed the others on real web traffic. The mean

precise request size was 15.8 bytes, compared to 132 for gzip, 243 for simple, and 980 for raw.

Despite a low average measurement, the precise request size distribution exhibited a heavy tail

(standard deviation of 287 bytes). Requests with exact URL matches were usually a few bytes

each, while many requests without exact URL matches were a few hundred bytes.

We also calculated the percent reduction in request size with respect to raw

measurements. These results can be seen in Figure 5.4b. Again, the reduction is much better for

the precise algorithm. Its measurements averaged 1.48% of the corresponding raw values, while

the gzip and simple algorithms averaged 9.87% and 13.5%, respectively. The request

measurements for the precise algorithm also have a lower variance, with almost all under 20% of

corresponding raw values. The simple and gzip size reductions are much more spread out, with

some requests measuring 20-75% of the raw size. These requests did not benefit much from gzip

or simple analysis.

The unconstrained bandwidth measurement results from real traffic yielded larger values

than those from the controlled test cases. The largest average request size of 14.5 bytes from the

sports news test was less than the overall average of 15.8 bytes per request for real web traffic.

One reason for this is that the controlled tests were not necessarily representative of real web

browsing. Other sites that were not in the controlled study may not have exhibited the same mix

of requests from plug-ins or event handlers. We did not compute the prevalence of this source of

inaccuracy, because doing so would have required manually analyzing a significant portion of the

half million requests.

During real web traffic processing, we witnessed a few sources of inaccuracy that were

not present in the controlled test cases. One such issue is missing cache objects. Clients may

cache resources from the server for long periods of time, making those resources unavailable in a

network trace. This is especially problematic for missing scripts that perform important tasks. The

effects of this problem could be reduced by having the analysis engine fetch missing objects from

the web. However, those objects may no longer be available or might have changed since the

original request.

Another source of error only found in real web traffic is the effect of different browser

versions. The controlled tests were all performed with Mozilla Firefox [Mozilla09a]. The analysis

engine’s Javascript and DOM implementation also mirrored Firefox. Real web traffic from other

browsers is likely to have different dynamic links corresponding to different browser behavior.

These differences could be reduced by implementing other DOM interfaces to match the browser

version reported in the headers of each request.

www.manaraa.com

 85

5.7.3 Analysis Performance

The real web traffic was analyzed on a commodity laptop computer with a dual-core Intel

T2500 processor and 2 GB of RAM. The analysis algorithms ran in a single thread on one core,

with the other core being utilized by the operating system. The analysis engine was able process

the combined request and response stream at 1.7 Mbps. The bottleneck during processing was

CPU. The real web traffic consisted of 3.04 GB of total data, 15% of which (475 MB) was

request data and 85% of which (2.58 GB) was response data. The engine processed the requests at

an average rate of 0.25 Mbps, and the responses at an average rate of 10.9 Mbps. This disparity in

performance is due to the time required to compute the edit distance for request URLs. Javascript

execution was included under the response processing time. None of the scripts were given a time

limit, and none of them entered infinite loops.

Analysis performance for the prototype implementation would need improvement for use

in an intrusion detection system that inspects large volumes of network traffic. One area for

optimization is reducing the number of edit distance comparisons and approximating the edit

distance computation by only considering multi-byte chunks. Another way to improve

performance would be to employ a string co-processor specially designed for edit distance

computations. Exploring CPU performance optimizations and maximizing the throughput of the

unconstrained bandwidth measurement engine is future work.

The memory footprint during analysis was quite large for the prototype implementation.

It kept all of the observed links in memory and did not attempt to free older data that was less

likely to improve analysis results. Processing 20 MB of web browsing traffic from one user

during a single day required 120 MB of RAM. Although this would be unreasonably large for an

intrusion detection application, we believe that this number could be greatly reduced by simply

discarding links from old pages. While analysis results may be a little bit worse, the number of

links that are loaded from pages that have been open for hours is far smaller than links that are

loaded from recent pages. Another possible optimization is sharing link information across users.

5.8 Entropy Mitigation Strategies

The evaluation showed that a significant portion of information in web requests must be

counted because it originates from entropy on the client. If this entropy can be reduced or

measured at a trusted source, then the analysis engine can obtain more accurate results. This

section discusses possible strategies for reducing inaccuracies in unconstrained bandwidth

measurements due to entropy on client computers.

www.manaraa.com

 86

5.8.1 System Information and Human Input

The current leak measurement engine cannot see actual system information or human

input to a client; it only witnesses the resulting requests. Due to the complexity of active content

on websites, system information and human input can sometimes lead to a chain of events that

generates a much larger output than the size of the original information. For example, clicking on

a particular place on a web page may lead to an AJAX request that contains a few hundred bytes

of XML. Speculatively firing events would help somewhat with determining expected requests,

but such an approach would quickly lead to an exponential blow-up in processing time. A better

solution would be to obtain system information (screen resolution, OS, installed plug-ins, etc.)

and human input hints from an agent running on the end host. This agent could be a browser

plug-in that records and sends all of the system information and human input events to the

analysis engine. Instead of having to speculate, the engine could then replay the exact sequence of

inputs and verify that the output is the same. It could only count the size of the original input,

rather than the larger resulting output. It is also okay if the agent reports data incorrectly, because

doing so would only increase the unconstrained bandwidth measurement and raise suspicion.

Depending on the threat model, it may also be possible to reduce unconstrained

bandwidth measurements by discounting human input entirely. This approach may be appropriate

if the user is trustworthy, but malware is a concern. A trusted device, similar to a hardware key-

logger, could intercept mouse and keyboard events before they reach the computer, and then

report them to the leak measurement engine. This would aid analysis in a similar manner as a hint

from a browser plug-in, except that the size of the original human input could be discounted as

well, assuming that the user is trusted.

5.8.2 Timing

The timing of each request has the potential to leak several bits of information to an

observer stationed outside of the network. The traditional method for mitigating timing channels

is to add entropy to each request. For web traffic, this can be achieved by adding a trusted proxy

server between the client and the web server. This proxy can add jitter to each web request by

delaying it a random amount of time. This could significantly increase the size of the timing

interval, raising it from 0.06 seconds to 1 second (any more might disrupt usage). Randomly

delaying requests up to 1 second would reduce the amount of timing information in each request

by 5 bits, which can add up to a significant savings for a large number of requests.

Another option available to us that would not be feasible for mitigating a traditional IP

packet timing channel is reducing the total number of requests. Every time a client makes a

www.manaraa.com

 87

request for a web page, a smart caching proxy could pre-fetch all of the mandatory links. Then,

when the client requests a resource from a mandatory link, the proxy can return the result without

any information leaving the network, thus precluding leakage through those requests.

In addition to the timing of requests themselves, some requests include an explicit time

value. This is the system time at which a script executed on the end host. Websites may include

this time value to prevent caching, or to collect statistics about latency from their users. In any

case, it differs slightly from the time that a request actually appears on the network, has a high

precision, and can therefore leak information. A proxy server can eliminate timing information of

this form by discovering it with the edit distance algorithm and then overwriting it with the time

that the proxy actually sends the request.

5.8.3 Random Number Generator

Many websites have scripts that include random numbers in link URLs. The purpose of

doing this is to prevent caching. At the same time, however, these requests leak data in their

selection of random numbers. One way of reducing entropy from the random number generator

(RNG) is to instead have a network service that handles random number generation. When an

executing script makes a call to fetch a random number, the Javascript engine could request a new

random number from a trusted central location instead of using the local RNG. This would move

random numbers from the set U of UI-layer input to the set I of network inputs, allowing the

analysis engine to discount them from the information measurement in outbound web requests

(assuming they are not modified by malware).

5.9 Conclusion and Future Work

This chapter introduced a new approach for quantifying information leaks in web traffic.

Instead of inspecting a message’s data, the goal was to quantify its information content. The

algorithms in this chapter achieve precise results by discounting fields that are repeated or

constrained by the protocol. This work focuses on web traffic, but similar principles can apply to

other protocols. Our analysis engine processes static fields in HTTP, HTML, and Javascript to

create a distribution of expected request content. It also executes dynamic scripts in an emulated

browser environment to obtain complex request values.

We evaluated our analysis techniques on controlled test cases and on real web traffic

from 10 users over a 30-day period. For the controlled tests, the measurement techniques yielded

byte counts that ranged from 0.32%-1.12% of the raw message size. These tests highlighted some

www.manaraa.com

 88

limitations of our approach, such as being unable to filter parts of URLs that contain random

numbers to prevent caching. For the real web traffic evaluation, the precise unconstrained byte

counts averaged 1.48% of the corresponding raw values. This was significantly better than a

generic compression algorithm, which averaged 9.87% of the raw size for each request.

In the future, we plan to implement similar leak measurement techniques for other

protocols. E-mail (SMTP) will probably be the most challenging because a majority of its data is

free-form information from the user. There is also a lot of room to improve the dynamic content

analysis techniques. Obtaining user input hints from clients and executing plug-in objects can

help extract additional request URLs. Finally, we hope to optimize and integrate the techniques

from this paper into a network intrusion detection system that uses bandwidth thresholds to

discover information leaks.

www.manaraa.com

 89

CHAPTER 6

INFERRING MALICIOUS ACTIVITY
WITH A WHITELIST

6.1 Overview

Traditional threat detection approaches involve directly categorizing and identifying

malicious activity. Examples of this methodology include anti-virus (AV) software, intrusion

detection systems (IDSs), and data loss prevention (DLP) systems. These systems rely on

blacklists that specify undesirable programs and network traffic. Blacklists have a number of

benefits. First, when some malicious activity matches a signature on a blacklist, an administrator

immediately knows the nature of the threat and can take action. Second, many blacklists are

globally applicable and require little tuning for their target environment (a known computer virus

is unwanted in any network). Widespread applicability also goes hand in hand with low false-

positive rates; activity that matches a blacklist is usually not of a legitimate nature. These

advantages, along with the simplicity and speed of signature matching, have made blacklisting

the most prevalent method for threat detection.

Despite its benefits, blacklisting suffers from fundamental limitations that prevent it from

operating effectively in today’s threat environment. One limitation is that a blacklist must include

profiles for all unwanted activity. Malicious software (malware) is now so diverse that

maintaining profiles of all malware is an insurmountable task. Research shows that even the best

AV software can only detect 87% of the latest threats [Oberheide07]. Furthermore, a hacker who

targets a particular network can modify his or her attack pattern, test it against the latest IDS and

AV signatures, and completely avoid detection, as is demonstrated in [Vigna04].

In this thesis, we explore an alternative approach of detecting malicious network activity

using a combination of application identification techniques, described in Chapter 4, and a

whitelist. The goal of our whitelist is to classify and categorize all legitimate network activity.

Anything that does not match the whitelist is considered suspicious. This approach eliminates the

www.manaraa.com

 90

need for scaling signature generation efforts with respect to attack diversity. Instead one only has

to keep track of legitimate application behavior, which is easier because good applications do not

try to hide by frequently changing their profiles. Whitelisting is further advantageous because is it

able to identify new and unknown threats. Any network traffic that does not fit the profile of a

legitimate application will generate an alarm.

Even though network-based whitelisting is a promising method for threat detection, there

are significant challenges that must be overcome before it is practical in a production

environment. First and foremost is building an effective whitelist. If there are gaps in the

whitelist, then false positives will cripple the detection system. Whitelists also evolve over time

as users install and upgrade their applications. So, adding new entries to the whitelist must be

straightforward for security analysts and not require assistance from an engineer.

Another major challenge of whitelisting is specifying legitimate activity with enough

detail that an attacker cannot trivially mimic good behavior. Mimicry attacks are impossible to

prevent in the general case, but an effective whitelist will make it difficult to mimic good

behavior while still conducting nefarious activity. Whitelists should also put a hard limit on the

damage that can be done by malware, forcing it to “behave well” in order to avoid detection. An

example of a poor whitelist would be one that allows all outbound network traffic on specific

TCP ports. The amount of work required for malicious software to avoid detection by

communicating over an allowed TCP port is next to nothing, and the amount of data it can send

over that port is unlimited. An optimal whitelist will only contain the minimum set of activity

needed for a given application to function properly.

In this chapter, we present a whitelisting approach that is based on methods from the

previous chapters for detecting web applications and measuring their outbound bandwidth.

Chapter 4 talks about how to identify network traffic that was generated by automated web

applications rather than by humans browsing the web. Application of these methods results in a

list of alerts that specify the way in which particular traffic differs from human web browsing

(timing, formatting, etc.) along with the traffic content and host name. Chapter 5 discusses a

method for quantifying outbound information flow in web traffic. This method, when combined

with graduated bandwidth thresholds, also generates alerts in response to abnormally large

information flows.

Our whitelist consists of a mapping from alerts to known applications. All of the entries

in the whitelist for a particular application make up its application profile. Each whitelist entry

may match a number of alerts based on the server name, server address, client address, type of

www.manaraa.com

 91

alert (bandwidth, timing, formatting, etc.), message field value (e.g. user-agent or header field for

non-browser requests), or amount of bandwidth usage.

We created the whitelist with application profiles based on observation of network traffic

from over 700 computers in a corporate network. At the end of a two-year deployment, the

whitelist contained 501 different application profiles with a total of 1789 entries. As the whitelist

matured towards the end of the deployment, the number of new whitelist entries per month

approached about 50, or 1.6 per day on average. These entries were the result of about 10 false

positives per day, which is a reasonable rate given the size of the deployment. We expect that a

more widespread deployment will have an even lower false rate of whitelist entries per computer,

as there will be more overlap for common applications. The test deployment also helped us

understand more about the network behavior of different legitimate and malicious programs.

A key difference between whitelists and blacklists is that the content of a whitelist may

vary significantly from one deployment to the next. Some organizations with strict policies may

only allow a specific subset of web applications on their network. Others may have more relaxed

policies, but still not want particular applications, such as file sharing or instant messaging

programs, running on their network. When an organization initially deploys a whitelist-based

threat detection system, they can tune the whitelist by removing application profiles for unwanted

programs. These profiles will still remain in the system to aid in threat remediation, but alerts that

match these entries will be displayed to an administrator instead of being ignored by the system.

6.2 Prior Whitelisting Systems

The concept of whitelisting is not new to the field of computer security. Prior research on

intrusion detection using sequences of system calls [Hofmeyr98] looks at trusting known good

behavior at the system call API layer to isolate malicious execution patterns. The authors were

able to reliably detect a number of intrusions that led to sequences of system calls not seen during

normal activity, while maintaining a low false positive rate. The seminal work by Hofmeyr et al.

led to a figurative arms race between researchers finding new ways of exploiting a system while

mimicking legitimate system call behavior [Garfinkel03b, Wagner01], and those developing more

precise characterization methods that make mimicry more difficult, such as examining the entire

stack trace for each call [Feng03]. An important result of this escalation between attack and

defense technology is that mimicry attacks are extremely difficult to prevent altogether, but one

can make them much more difficult with a precise whitelist-based detection system.

www.manaraa.com

 92

The research presented in this chapter is similar to system call-based intrusion detection

in that they both use whitelists to identify threats. However, network traffic is a different input

domain. Whitelists for system call IDSs precisely enumerate the set of all allowed call patterns.

Taking this same approach and explicitly specifying the set of all benign network traffic would be

a very difficult task due to the huge diversity of possible messages. Instead, we are taking meta-

information in the form of alerts about traffic that deviates from a conservative baseline, and then

trying to determine their source application. The methods we use for alert generation also take

session state into account, which is critical because it directly influences the set of expected

network messages at any given time. System-call IDSs only consider a very small amount of

session state in the form of call sequences. Restricting examination of network traffic to only the

last several messages in this manner would preclude any sort of bandwidth or regularity

measurement. Successful application of a whitelisting approach to network traffic requires

complex long-term state tracking at the front end to generate meaningful statistics from which the

whitelist entries can classify traffic according to its source application.

A classic example of whitelisting for security purposes is a firewall with specific allow

rules followed by a deny all rule. In this scenario, only traffic associated with known legitimate

ports and protocols is allowed to pass in or out of the network. Although this type of whitelist is

very effective at protecting internal services from probing and attack, it is not effective at

blocking malicious applications from accessing the Internet. This is because it is trivially easy for

malware to use an outbound port and protocol allowed by the firewall, and then enjoy a virtually

unlimited communication channel to the external network.

Some security systems go a step further than firewalls and actually determine the

application-layer protocol for each network connection [Netwitness09, Sandvine09]. This way,

they can identify programs that are trying to communicate over a standard TCP port for one

application-layer protocol, such as 80 for HTTP, using a different application-layer protocol, such

as SSL (secure sockets layer), SSH (secure command shell), or IRC (internet relay chat). This

type of whitelisting approach does help detect some unwanted activity. However, it fails to meet

the requirements of an effective whitelisting system in that it is trivially easy for malware to

communicate over an allowed port using an allowed protocol. Furthermore, forcing the use of an

allowed protocol puts no limit on the amount or outbound traffic or its content, provided that it

loosely conforms to protocol specifications.

www.manaraa.com

 93

6.3 Whitelist Design

The purpose of a whitelist is to provide a mapping from alerts to known applications. The

whitelist consists of entries, each of which has two parts. The first is the matching section where

the whitelist entry specifies which alerts it will match. The matching section does not reference

raw HTTP requests that caused the alert because they may not always be available in practice due

to privacy or performance considerations. Allowing whitelist entries to reference request URLs

and content would also increase complexity and may make it more difficult for an average

security analyst to update the whitelist. The second part of a whitelist entry is the action, which

can associate alerts that match the entry with a particular application or ignore them entirely. The

set of all whitelist entries that associate alerts with a particular application makes up an

application profile.

The alerts that we consider in whitelist entries come from the formatting, timing, and

bandwidth analysis techniques presented in earlier chapters. The contents of an alert can be seen

in Table 6.1. Each alert contains fields specifying the time, client address, server address, server

name, alert type, and alert details. The server name may be taken from the “Hostname” header

field in an HTTP request. The alert type is one of a fixed set of values denoting the type of

anomaly. Alert types include: unknown user-agent, unknown header field, bad header format,

regularity, delay time, time of day, and bandwidth. There are also alert types for sub-classes that

indicate different measurement methods and thresholds, including 8-hour c.o.v regularity,

unknown Mozilla/4.0 user-agent field, bandwidth level 2, etc. Finally, the details may contain an

arbitrary string describing the exact nature of the alert. For formatting alerts that indicate an

unrecognized field, the details hold its value. For timing and bandwidth alerts, it details show the

exact regularity, delay, or byte count measurement.

The module that generates alerts is responsible for verifying the server name with a

reverse DNS look-up; we assume it is correct at the whitelisting stage. The alert generation

module also does not currently take any measures to prevent DNS hijacking. One possible

counter-measure to DNS hijacking would be to raise an alarm if the IP address for a hostname in

Timestamp Client Addr. Server Addr. Server Name Alert Type Alert Details
5:12 PM 10.0.0.100 10.0.29.64 www.website.com Header X-my-header

11:09 AM 10.0.0.100 10.0.1.200 server.othersite.net Regularity c.o.v.: 2.718
10:22 AM 10.0.0.102 10.0.63.69 www.mysite.com User-Agent MyHTTPAgent
4:15 AM 10.0.0.105 10.0.14.71 --- Bandwidth 1,618,034 bytes

Table 6.1. Four sample alerts that indicate various formatting, timing, and bandwidth anomalies. The
server name may not be present for hosts without DNS entries.

www.manaraa.com

 94

the whitelist changes to an IP address in another sub-network owned by a different autonomous

system (AS).

Entries in a whitelist may reference any of the alert fields. For each field, a whitelist entry

may match an exact value, all values, or a subset of values. Table 6.2 contains examples of

several whitelist entries. The timestamp field can have a single absolute time range, or it can

contain a daily time range along with a mask specifying certain days of the week. This is helpful

for whitelisting automated processes, such as updates (the fifth entry in Table 6.2 allows IDS

signature updates), that run on a fixed schedule. The client address and server address fields

support address ranges. These are helpful for specifying clients with different security

requirements or services that run on a sub-network of IP addresses. The server name field may

contain a hostname wildcard matching string (e.g., “*.website.com” will match alerts for any

domain name ending in website.com). There are only a small number of alert types corresponding

to different kinds of formatting, timing, and bandwidth anomalies, so the whitelist entries may

have a bit mask matching any combination of alert types. Finally, a whitelist entry may use a full-

fledged regular expression to match the alert details field. Regular expressions are particularly

helpful when matching new message fields that include a frequently changing application version

string, as can be seen with the “GoogleToolbar \d+\.\d+\.\d+” detail matching string in the second

entry of Table 6.2.

6.4 Whitelist Construction Methodology

Now that we have a method of specifying whitelist entries, it is essential that we outline a

systematic approach for generating new entries that is straightforward and comprehensible to an

average security analyst for most cases. The process begins when there are new alerts that do not

match any current whitelist entries. The alerts can fall into one of three categories – formatting,

timing, or bandwidth – which influences the approach that should be taken when creating a new

Time Client Server Server Name Type Details Application
* * * sb.google.com All Timing * Google Toolbar
* * * * User-Agent GoogleToolbar \d+\.\d+\.\d+ Google Toolbar
* * * sqm.microsoft.com Bandwidth-1 * MS Office
* * 9.73.8.x * All Timing * Yahoo Msngr

2-3 AM IDS * *.snort.org User-Agent wget —

Table 6.2. Five sample whitelist entries specifying legitimate network behavior.
The first six columns dictate alerts that the entry will match, and the Application specifies association

of those alerts with an application, or ignoring them altogether (“—”). Entries with “All Timing” match
alerts from traffic with regular timer-driven requests to the given servers. “User-Agent” entries match

HTTP requests that have a given user agent (regular expressions are allowed). The “Bandwidth-1”
entry matches bandwidth alerts that exceed the first bandwidth threshold.

www.manaraa.com

 95

whitelist entry. Often times, one application will generate alerts from multiple categories, such as

a timing alert and an unrecognized header field alert. This section describes methodology for

grouping alerts, determining their source application, and creating appropriate general-purpose

whitelist entries. It also discusses creating domain-specific whitelist entries and security

considerations associated with whitelist construction (i.e. how to make sure whitelist entries do

not open up a backdoor that allows hackers to circumvent the system).

6.4.1 Grouping Alerts

The first task in constructing whitelist entries is determining which alerts are associated

with the same application. It is best to group alerts first by server domain, and then by time and

client to figure out which ones are associated with the same application. Most of the time, alerts

for the same application will all have the same server domain name. However, this is not always

the case for domains that host several applications (e.g., google.com, microsoft.com, yahoo.com,

etc.) or for secondary application servers that only have an IP address (e.g., instant messaging

servers, peer-to-peer applications, etc.). In these situations, clustering alerts by client and by time

provides a strong indication that they are associated with the same application.

6.4.2 Determining the Source Application

After the set of alerts associated with one application has been determined, the next step

is identifying that application. One must exercise caution during this part of the process, so as not

to add a whitelist entry for malicious network traffic. During our experience constructing a

whitelist, we encountered several cases where an alert looked benign (primarily for formatting

alerts) but contained subtle differences or omissions compared to normal traffic. An example is

the user-agent field “compatible” that is present in any standard browser HTTP request. A

particular spyware program mistakenly included the field as “Compatible”, which only differs in

the capitalization of the first letter.

In some cases, alerts may be associated with a general class of applications or operating

systems and not be specific enough to identify a particular application. An example of this would

be a header field that contains “Windows” or “Linux” for the details. In these cases, the source

application for the whitelist entry should be left empty, indicating that matching alerts are too

generic to say anything meaningful about the source application.

The best approach for accurately identifying the source application for a group of alerts is

to consider a number of data points and make sure that they are consistent with one another:

www.manaraa.com

 96

• Research the server. If the host is running a public web server, then visit pages on the site

(using a browser sandbox in case it is malicious) to learn more about the server. If not,

perform a WHOIS look-up to determine who owns the server and where it is located. In

particular, look for any software products hosted on this server that may download updates

or report registration/usage information. Also look for Java applets with security

certificates that are hosted on the server, as they may send arbitrary data over the network.

• Research the message formatting. What do the requests look like? Specifically, focus on

the “User-Agent” field for HTTP requests, which is supposed to identify the client

application. Clients may sometimes impersonate a web browser, but will usually use a

string describing the application. For example, the second whitelist entry in Table 6.2

resulted from alerts with user-agent values containing “Google Toolbar”. If the user-agent

value contains a unique word but not an easily recognizable application name, then

querying a search engine often yields information about the application.

• Examine the request URL. The URLs of HTTP requests often give a clue as to their

nature. Examples include “/update”, “/reporting”, “/rssfeed”, etc. This can help narrow

down the type of application making requests.

• Examine the message content. This is especially important for bandwidth alerts. What

information is the client sending to and receiving from the server? In most cases, it will be

directly apparent what type of data is contained in HTTP messages (images, documents,

etc.) just by looking at the content-type header, as they should not contain encrypted

information. If encrypted of obfuscated data is present, it usually indicates proprietary

usage reporting for outbound requests, or program updates for inbound requests.

Methodically examining these four information sources for each set of alerts associated

with a particular application will usually lead to a strong conclusion about the source application

and whether it is legitimate. For rare cases where messages have cryptic content and go to an

unknown or suspicious server, it is best to perform further forensic analysis on the client to assess

the legitimacy of the application generating the alerts.

6.4.3 Creating the Whitelist Entries

Once the source of alerts has been determined, the last step is creating appropriate

whitelist entries that will match future alerts from the source application. The goal of these entries

is to match all alerts that the application can generate, and not match alerts generated by any other

application. Defining perfect whitelist entries can be difficult, or even impossible in cases where

applications partially overlap. Due to the base-rate fallacy [Axelsson00], it is best to err on the

www.manaraa.com

 97

side of fewer false positives, unless the likelihood of illegitimate activity generating an alert is

comparable to the likelihood of a false positive. For practical purposes, the whitelist entries

should match the approximate minimal set of alerts that includes all alerts an application can

generate. The precise minimal set may be overly complicated, leading to false positives and not

offering much extra security. For example, there may be 100 servers in a 255-address contiguous

sub-network. It is sufficient to include the entire sub-network in a whitelist entry instead of

enumerating every address.

Given a set of alerts for an application, the first step in building a whitelist entry is to

determine all of the alert types and alert details that the application may generate in the future. In

almost all cases, it is sufficient to include the exact alert types and alert details present in the

current set of alerts. The primary exception to this rule is when there are numerous formatting

alerts that contain slightly different details, such as different version numbers. In these cases, one

should use a regular expression that matches all alerts by inserting placeholders for dynamic

values. An example of this can be seen in the detail column of the second alert entry in Table 6.2.

The detail string “GoogleToolbar \d+\.\d+\.\d+” matches any message field that starts with

“GoogleToolbar” and contains a three-number dot-separated version number.

The final thing to consider before making the whitelist entry is whether alerts are only

associated with a particular server or domain postfix. This must always be the case to reason

about alert types with non-specific details, such as timing and bandwidth alerts. If the alerts are

all associated with a particular server or set of servers, then the whitelist entries should reflect that

fact. This is likely to be the case for web applications that only communicate over the network to

report usage statistics or download updates. However, many internet applications, such as

browser plug-ins and utilities like GNU Wget [Niksic98], may access a wide variety of servers

and should not have a specific server field.

6.4.4 Deployment-Specific Whitelist Entries

So far, we have not discussed the timestamp and the client whitelist fields. These fields

should always be left blank for general-purpose whitelist entries that are applicable in any

environment. However, client and timestamp settings may be appropriate for a specific

deployment. The client field is useful if only certain computers or sub-networks of computers are

permitted to run a particular application. For example, web developers may have free reign to

send messages with arbitrary formatting to company servers, while these messages may be

indicative of an attack when coming from different clients. Another example, which also

incorporates the timestamp, can be seen in the last line of Table 6.2. This whitelist entry specifies

www.manaraa.com

 98

that the server with hostname “IDS” is allowed to access *.snort.org with the Wget application

[Niksic98] between 2 AM and 3 AM, presumably to fetch updates. It is important not to allow

Wget for other computers or at other times, because while it is a legitimate utility, attackers often

call it from shell code to download secondary malware payloads [Borders07]. Deployment-

specific whitelist configuration can provide extra security, and should be part of the initial

deployment process for networks with heterogeneous client security policies.

6.4.5 Whitelist Security Considerations

In general, servers fall into one of two categories: small or well-known. A small server is

any server that is not backed by a well-known and reputable organization. Although they almost

always mean well, small servers are more susceptible to hackers. When creating whitelist entries

for alerts that could potentially involve small servers, it is important avoid bandwidth alerts

whenever possible and use the minimum threshold. If it is public knowledge that the whitelist for

a popular security system allows a huge amount of bandwidth to some boutique website, it may

become a target for hackers who wish to circumvent the security system.

Though it is important to be wary of small servers, there are also security considerations

for well-known servers. Hackers may post data on a well-known server that they do not control,

and retrieve the data remotely. An example is spyware that reports sensitive information back to

its owner is by sending it in an e-mail message from a web mail account. Theoretically, a hacker

can use any website at all that accepts posts and will display them back at a later time. When

creating whitelist entries for well-known servers that allow posting of data, it is important to only

match the minimal set of alerts. For example, if HTTP requests to a web mail server with various

user-agents are generating alerts, it is best to enumerate the specific user-agents that may access

the server rather than trust all user-agents. This increases the likelihood of detecting malware that

uses the same web mail service for sneaking data out of a compromised machine. As with alerts

to small servers, it is also critical to limit bandwidth whitelist rules for well-known servers that

accept posts. This minimizes damage that can be done by an attacker who knows the whitelist

rules.

The last thing to keep in mind while generating whitelist entries is that the network path

between clients in an enterprise and servers on the Internet is not safe. Regardless of how

trustworthy a server may be, whitelists should never contain entries that are unnecessarily broad,

unless they are deployment-specific and only apply to servers within the local network.

www.manaraa.com

 99

6.5 Case Study: Constructing a Whitelist for a Corporate Network

We deployed a network monitoring system that generates alerts based on algorithms

outlined in this thesis in a medium-sized corporate network with over 700 computers over a two-

year period from February 2007 to February 2009. This deployment was not wide-scale enough

to draw conclusions about the precise rate of false positives and new whitelist entries. However, it

does demonstrate the feasibility of a whitelisting approach, and leads to a better understanding of

both legitimate and malicious program behavior as it relates to web traffic. This section first

shows the rate of whitelist entries over time, and then discusses characteristics of different

legitimate and malicious programs.

6.5.1 Whitelist Entry Rate

The deployment monitored traffic at the network edge for two years. While traffic was

collected steadily throughout this time, there were gaps in alert reporting due to data loss. We

analyzed alerts that were collected and manually constructed the resulting whitelist entries

according to the principles outlined in the previous section. Figure 6.1 shows the number of new

whitelist entries per month over the two-year time period. Instead of measuring the time at which

each whitelist entry was added, this graph measures the time of the first alert that matches each

whitelist entry. The rate at which new whitelist entries are needed is much higher during the first

few months of the deployment, peaking at 350 during the fifth month, and then it steadily

declines to about 50 entries per month towards the end of the deployment period. This steady rate

of new entries corresponds to the regular appearance of new applications and application

versions. We believe that a steady rate of new whitelist entries that hovers around 1.6 per day is

reasonable for a network of over 700 computers, and is likely to take an analyst only a few

minutes to update every day. For the last two months of the study, this rate of whitelist entries

corresponded to about 10 false positives per day for the 700 computers. Although we have not

tested whitelisting in a larger network, we expect that the amount of work will scale in a less-

than-linear fashion due to increasing overlap in whitelist entries.

The security policies in the test corporate network were almost completely open. Users

were allowed to install just about any program they wished on their computers, including instant

messaging applications, anti-virus software, and web browsers. The only exceptions were

programs used for illegal activity or that take up excessive network bandwidth, such as file-

sharing software. Developing an effective whitelist is the most challenging in an open network

www.manaraa.com

 100

environment. We expect that applying our whitelisting methodology in a closed network with a

more limited software base would lead to a smaller whitelist and a lower false-positive rate.

The results shown in figure 6.1 contain some anomalies. One would expect the rate of

new whitelist entries to always be highest during the first month of installation, and then die

down in an exponential fashion. In our test deployment, the number of entries peaked at the fifth

month. The reason for this is that the frequency of data loss in the first few months was also

higher because the system was in an earlier phase of testing. If we were able to go back and

evaluate the whitelist on a complete packet capture for the entire duration of the two-year period,

then we would expect to see a peak at the beginning, and a gradual decline in entries throughout.

6.5.2 Whitelist Entry Characterization

The whitelist entries that were added during the test deployment fall into a number of

general groups according to the type of traffic they match.

Formatting Only – Most of the whitelist entries fall into the formatting-only category.

These entries will match web requests and alerts solely on their formatting. Specifically, these

entries match values in the User-Agent field, and custom header fields. The reason that these

entries occur so frequently is that most legitimate applications uniquely identify themselves by

setting a custom user-agent value, and some use custom HTTP headers. Because these headers

and user-agent values are unique, there is no need to specify a particular host name or range of

server IPs in the whitelist entries; every request that matches the given format should come from

Whitelist Entries Per Month

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Month

E

n
tr

ie
s

Figure 6.1 New whitelist entries per month over a two-year test deployment. Months with few or no
entries correspond to data loss. Toward the end of the deployment, the rate of whitelist entries

approaches 50 per month.

www.manaraa.com

 101

the associated application, unless it is being intentionally spoofed. Applications in this category

also do not generate large or frequent enough requests to trigger bandwidth or timing alerts.

No Formatting – Many applications send out HTTP requests that have no custom header

fields or user-agent values. This is just as anomalous as a custom user-agent, but it is not as easy

to identify which application generated a request with no identifiable formatting. In this case, we

rely on the server name or IP address to dictate the source application. Whitelist entries in this

group will specify “No User-Agent,” as well as a server name/IP matching string, and the

associated application.

As far as we saw, only one type of application would send requests without a user-agent

to servers other than those owned by its vendor. These were RSS readers. We created a special

case module for RSS readers that peeked at the content of server responses to identify the content

as an RSS feed. If a client sends a request without a user-agent to a server that responds with an

RSS feed, then that request is classified as coming from an RSS reader.

Timing – Some applications used regular requests to communicate with their home

servers. These requests triggered the timing or regularity filters described in Chapter 4. We found

that distinguishing between timing and regularity did not offer much benefit to the whitelist

entries, because applications that trigger one usually triggered both. A number of applications that

triggered timing alerts made requests with generic user-agent and header values, so were

identifiable only by timing alerts to their home server. An example of a request with a generic

user-agent is when an application makes a call to the standard Windows internet library to fetch a

URL. One version of Windows will make the call with the user-agent “WinInetRequest 1.0”.

Like whitelist entries for requests with no formatting, the timing entries were based solely on the

destination server IP or hostname. Many of the timing whitelist entries were associated with

weather reporting applications. We did not witness any legitimate software making timer-driven

requests with non-descriptive user-agents to websites other than those owned by their vendors.

Timing Plus Formatting – There were a few applications that would trigger timing

alerts to a wide variety of server IP addresses on the Internet. The prime example of this was a

messaging application that also supported voice chat. Presumably, timing alerts to random IP

addresses came from digital voice conversations. In this case, the whitelist entries would match

any timing alerts where the request formatting also matched a specific value (that of the

messaging software). This way, other applications that generate timing alerts to random IP

addresses do not match the whitelist.

Bandwidth – Bandwidth whitelist entries are the most security-sensitive. If entries exist

that allow arbitrarily large amounts of outbound traffic, then hackers could exploit such entries to

www.manaraa.com

 102

steal data. Only a few entries were added to the whitelist for bandwidth alerts, and they were for

widely-deployed applications, such as operating system update utilities, office application usage

reporting, desktop search, and voice clients. Bandwidth entries matched both the server name and

request formatting. So, for example, only bandwidth alerts to update.microsoft.com that also had

the user-agent “Windows Update” were ignored.

6.5.3 True Positives

During the evaluation period, we also encountered a number of true positives that did not

match entries in the whitelist. It is useful to understand what types of anomalous behavior the

whitelist does detect in practice, so that we have a better idea of what to look for when evaluating

whether an alert is a false positive.

The simplest type of true positive is one that occurs from formatting only. Some

unwanted programs will explicitly identify themselves because they may have a legitimate

purpose in the eye of their providers. Adware programs that annoy the user but do not steal

personal data fall info this category. File sharing programs are also considered unwanted in many

networks. Another more nefarious example is “Remote Administration” software, which is

essentially a backdoor that gives an outsider full control of a computer. Presumably, the outsider

is an “administrator” trying to fix a problem, but could in fact be a hacker exploiting the target.

Some attacks also make use of Wget [Niksic98] to fetch their secondary payloads out of

convenience. These attacks are detected immediately.

The next type of software that can be detected by formatting alone is poorly-written

malware. There are several examples where a malware writer selects a user-agent or header field

that is anomalous by mistake, when they are actually trying to hide. Some omit the user-agent

field entirely, which also generates an alert. As mentioned earlier in this chapter, one malicious

program was seen with the user-agent field “Compatible” instead of “compatible”. Other such

screw-ups include spelling “Referer:” as “Referrer:” and sending a user-agent that reads: “Internet

Explorer”, when the real Internet Explorer user-agent is: “Mozilla/4.0 (Windows; MSIE 6.0)”.

These blunders are easy to avoid from an attacker’s perspective, but detecting them is an

immediate way to identify haphazardly written malware.

Some malware that uses protocols other than HTTP will try to avoid detection by running

those protocols over the standard HTTP port 80. This is seen most frequently with internet relay

chat (IRC), which has become the preferred language of command and control for many botnets.

Any traffic that deviates from the HTTP protocol will immediately generate an alert.

www.manaraa.com

 103

Other malicious programs were seen triggering delay time and regularity alerts on several

occasions. Examples include malware that frequently called home by connecting to a web mail

account, as well as the previously mentioned remote desktop software. These programs were

detected by virtue of their continuous interaction over the network. It is somewhat harder for

hackers to avoid timing filters, because doing so requires a change in the behavior of their

software, not just modifying the format to mirror a legitimate web browser request.

None of the true positives from malicious software that we witnessed during the

evaluation period triggered bandwidth alerts. However, alerts were generated whenever a user

uploaded large amounts of data. As far as we know, none of these uploads were associated with

insider leaks. They mainly consisted of documents and pictures, with the occasional large

message board post. In a larger network, manually inspecting all the file uploads to the Internet

could get expensive. One way to deal with these alerts is to isolate and extract file uploads and

text area posts, then send them to a data-loss prevention (DLP) system for content analysis. Then,

analysts would only need to inspect alerts for bandwidth violations that occurred as a result of

application data, rather than data inserted by the user on a website post.

6.6 Conclusion and Future Work

In this chapter, we examined a new approach to classifying activity from network

applications using a whitelist. This chapter provided examples of whitelist entries that match

alerts from earlier chapters for specific applications. We also described methodology for

effectively creating new whitelist entries without opening up backdoors for malicious software.

We evaluated the whitelisting approach by deploying it in a corporate network with over

700 computers for a two-year period. This case study shows a reasonable rate of new whitelist

entries and false positives over time of about 1.6/day and 10/day, respectively. The case study

also highlights different categories of network behavior from both legitimate and malicious

applications. Overall, the case study demonstrates the feasibility of a whitelisting approach for

identifying malicious network activity while maintaining a low false positive rate.

www.manaraa.com

 104

CHAPTER 7

LIMITATIONS

7.1 Overview

Some limitations of each system presented in thesis were discussed earlier in the context

of defining contributions. This chapter describes more precisely what security threats are handled,

and what type of information can be protected. While this thesis describes a number of novel

security mechanisms, they are by no means fool-proof or computationally free. Like any security

system, they can be attacked, but they make the adversary’s job much more difficult.

This chapter covers the limitations of each system from the previous chapters one by one,

and suggests some improvements. Each of the systems is designed to combat a different set of

threats and protect various types of information. Overall, the Storage Capsule system is the most

robust against malicious software, but is limited because it can only protect local files. The

formatting and timing filters for detecting network security threats are great at differentiating

legitimate applications from one another, but are vulnerable to spoofing by malicious programs.

The leak measurement algorithms have the advantage of also being able to detect insider leaks.

However, some entropy remains in outbound web traffic that malware could use to leak small

amounts of data.

7.2 Storage Capsule Limitations

Storage Capsules prevent malicious software from being able to steal information from

protected local files. They achieve this goal by cutting off all network and device output during

secure mode. Any changes that the primary operating system makes to sensitive files in secure

mode are re-encrypted by a trusted component. When the user is finished accessing a file, all

changes other than those to the storage capsule are discarded.

www.manaraa.com

 105

7.2.1 Security Limitations

The Capsule system has some security limitations. First, it relies on trusted components,

including the virtual machine monitor (VMM), the secure virtual machine (VM), the computer

hardware, and the user. If any of these elements becomes compromised, then all bets are off.

However, we believe that this is a reasonable threat model because the trusted components are

much more secure than a standard operating system. Virtual machine monitors contain far less

code and experience a much lower rate of vulnerabilities [Secunia09a] than commodity OS

kernels [Secunia09b]. The secure VM in Capsule runs only a very limited service to support

Storage Capsules, and everything else is blocked by a firewall. Finally, attacking hardware and

individuals carries greater risks because it requires physical interaction.

Another attack on the Capsule system involves malware tricking the user. Even if the

user is not malicious, a gullible user can be just as bad. The Capsule system asks the user to enter

a key escape during every transition to secure mode. Malware could skip this step and spoof the

password entry UI to steal the decryption password. If the user forgets about the escape sequence,

then Capsule cannot stop this attack. The primary countermeasure to spoofing is user education. It

may also be beneficial in the future to dedicate a portion of the screen to displaying the security

level to make the transition process more clear to the user.

Assuming that the trusted Capsule components maintain their integrity, malicious

software can still extract data from a protected Storage Capsule under some circumstances. In

particular, there are a number of covert channels in the Storage Capsule system. Chapter 3,

section 5 discusses the nature of several covert channels in greater detail. Of these, we believe

that the following covert channels exist in the current implementation of the Capsule system,

which uses VMWare workstation and does not over-commit memory to virtual machines. This is

not necessarily a complete list of covert channels, and measuring the bandwidth of these channels

is future work.

• Transition Timing – The primary VM has a small amount of control over the transition

timing going back to normal mode because it can delay the system for up to 30 seconds.

• Social Engineering – Malware in the primary OS can instruct the user to perform some

inane task upon returning to normal mode that actually leaks a few bits of information.

The only defense against this line of attack is educating users.

• CPU State – The CPU holds a great deal of state that helps optimize execution speed,

such as in caches and branch prediction tables. Malware may be able to manipulate this

state during secure mode and read it back by executing time-sensitive operations in

normal mode. This covert channel is quite noisy, however, because the VMM executes a

www.manaraa.com

 106

lot of instructions to revert the primary VM’s state before it can resume execution in

normal mode.

• Disk Cache State – Although all disk writes during secure mode are deleted (and thus

have minimal impact on cache state), reads made by the primary VM may affect disk

cache contents on the VMM. Again, this is a noisy channel because the VMM accesses a

large amount of data on the disk during the restoration and transition process going back

to normal mode.

7.2.2 Usability Limitations

The Storage Capsule system is designed to protect files that are edited locally. It cannot

provide security in an interactive context, such as an online banking session. Every time the user

transitions to secure mode and back to normal mode, a latency of 25-65 seconds occurs. While

this may be acceptable for editing some document for several minutes, it would not work for a

website session or a chat conversation.

Another limitation of the Capsule system is that it disrupts background tasks. If the user

is downloading a file, switching to secure mode to access a Storage Capsule will cut off the

download. Any other computation that is running in the background may continue to execute, but

its results will be erased if they are not saved in a Storage Capsule. In general, any task that relies

on device access or saving data outside of the Storage Capsule will break in the Capsule system.

One possible solution to this problem is to fork the primary VM for the transition to secure mode,

and allow the original version to continue running in normal mode with disk and device access.

However, allowing malware to potentially run in two side-by-side virtual machines opens up a

whole host of covert channels that would impact security.

Because the Storage Capsule system runs on end hosts, it has significantly more overhead

and less coverage than a network-based system. An administrator must install the Capsule system

on every computer that requires protection, which can be quite cumbersome. Furthermore, mobile

computers that do not support Storage Capsules may enter and leave the network. Sensitive data

on these machines would not be protected by the Capsule system.

7.3 Formatting and Timing Limitations

The formatting filters described in Chapter 4 will look at the content of each outbound

web request and compare its format to that of an expected browser request. Verifying formatting

in this manner has some limitations for both malicious and legitimate applications. First,

www.manaraa.com

 107

malicious applications can easily emulate the formatting of a browser by simply copying its

headers. Many malicious requests do have different formatting, either because attackers do not

know any better or made a mistake. However, nothing fundamentally prevents them from

avoiding detection by spoofing web browser request format. Legitimate programs do not

necessarily try to spoof a browser, but do not always make requests with identifiable formatting.

This occurs most often when almost all HTTP headers are omitted, leaving no unique format. It

can also occur when a program calls a standard library that sets the entire HTTP request

formatting without indicating the program making the request.

The timing filters analyze the regularity and delay between HTTP requests made to a

particular server. The goal is to identify non-human request patterns. Presumably, network

applications making web requests will set off these filters. These filters are limited in a few ways.

First, an application has to have frequent enough activity to trip the regularity filter. If some

spyware program extracts data from a computer over a half-hour period and then goes away, the

filter cannot differentiate it from human web browsing. Second, programs that want to remain

active over a long period of time can evade the filters by piggybacking on user activity. This

allows them to closely mimic the timing of human web browsing and avoid detection.

7.4 Leak Quantification Limitations

The algorithms presented in Chapter 5 determine a tight upper bound on the amount of

information in outbound web traffic. This information can be invaluable for forensic analysis.

With some improvements, these algorithms can also play an important role in an intrusion

detection system. However, the leak quantification techniques have some limitations. First and

foremost, they measure the maximum amount of information that could be leaking in network

traffic (i.e. its entropy), but do not say anything about the size of actual leaks. This is because the

analysis engine runs at the network level and cannot tell the difference between data that is

random and data that is crafted to convey information. An example of this limitation is a request

that includes a random number in the path to prevent caching. From the outside, one cannot tell

whether this number actually came from the random number generator, or if malware has

manipulated the value. The bandwidth of such entropy channels is much smaller than overall

bandwidth, but it is enough to leak small pieces of information, like individual names and

passwords, without being detected.

If used for intrusion detection, the leak measurement algorithms suffer from another

problem: legitimate outbound traffic with a high bandwidth. If users are in the habit of uploading

www.manaraa.com

 108

large files, which the algorithms must count, then it will be hard to establish a low threshold for

normal activity. One approach for dealing with this problem is to separate file uploads from other

unconstrained outbound bandwidth. By putting files in their own bin, it is easier for a security

analyst to inspect and process the files with a separate tool, such as a data loss prevention system.

Also, sequestering file uploads makes it possible to tighten the threshold on other outbound

traffic, thus minimizing the size of potential leaks.

Another major limitation of the current implementation is performance. The leak

measurement algorithms can only process traffic at about 2 Mbps. There are several factors that

contribute to this low maximum processing speed. The most costly part of the analysis is edit

distance computation. Some of the strings are a few thousand characters long, and edit distance is

an O(N2) algorithm. There are a few ways to speed up edit distance computations. First, they can

be approximated by chopping strings up into multi-character blocks instead of single-character

blocks. By considering 4-character chunks, the number of comparisons would be reduced to 1/16,

and the cost of each comparison would increase by 4 times, yielding 1/4 of the original cost.

Perhaps the most promising optimization for edit distance would be to employ hardware

acceleration. FPGAs are relatively inexpensive and could fit into an intrusion detection appliance.

Given enough space on the chip, hardware can calculate edit distance in O(N) clock cycles, and

can perform the calculation in parallel for multiple pairs of strings.

While edit distance is the most expensive part of the leak measurement algorithms,

webpage and Javascript processing can also be costly. Computing the precise unconstrained

bandwidth requires analyzing every HTML page and Javascript file returned by each server.

Because page analysis is fully parallelizable per page, one way to increase throughput would be

to distribute page analysis over several CPUs or other machines. Another optimization would be

to cache analysis results. At the most basic level, pages that are exactly the same do not have to

be analyzed again. Many web pages have dynamic content, but the content might not affect the

bandwidth measurement results. For example, if a page displays a user’s logged-in name, then

caching will not impact accuracy. In a production system, one would need to find a balance

between cache lifetime and measurement accuracy.

7.5 Whitelisting Limitations

The whitelisting system described in Chapter 6 is able to infer malicious activity by

comparing formatting, timing, and bandwidth alerts to a list of allowed behavior. From a security

perspective, the whitelisting system inherits the intersection of its individual components’

www.manaraa.com

 109

vulnerabilities. If malware is able to avoid triggering an alert for formatting, timing, and

bandwidth filters, then it will slip by undetected. Even when malware or a legitimate network

application does trigger an alert, however, there are some circumstances under which it may be

able to escape identification by the whitelist.

The only way for malware that triggers an alert to avoid detection is for that alert to

match some legitimate behavior on the whitelist. One prime example of such an attack would be a

web mail tunnel. If malware connects to an allowed web mail service while emulating web

browser request formatting, then it may be able to avoid detection. The key here is that there may

be whitelist entries for the web mail service that allow timer-driven or high-bandwidth requests.

Malware could exploit this knowledge by blending in with more regular and higher-bandwidth

legitimate traffic. The flip side of funneling illicit communication through a legitimate site,

however, is that the website owner can track and shut down suspicious accounts. One way to

combat this type of mimicry attack would be to reduce the number of applications on the whitelist

and the permissiveness of their entries.

Some legitimate applications are also hard to identify with the whitelist because they do

not generate unique alerts. Imagine a program that makes requests with no user-agent value or

headers to many arbitrary servers. We cannot add a whitelist entry to ignore formatting alerts to

all servers, but not doing so leads to false positives. In the two-year test deployment, we

witnessed one such class of applications that exhibited this behavior: RSS readers. They can

make requests without a user-agent to any server that hosts an RSS feed. In this particular case,

we had to add a special filter to the whitelisting system that inspected response content. If a

request is made without a user-agent that generates a response that is an RSS XML document,

then the alert is associated with the RSS reader application and ignored. In the future, it may be

necessary to add other special content filters to differentiate traffic from legitimate applications

that use generic formatting.

Finally, whitelisting is limited in that it only detects, and does not prevent bad behavior.

Due to its susceptibility to false positives from new applications and versions, blocking

everything that does not match the whitelist would have an impact on the functionality of network

applications. Detecting bad behavior after the fact means that malware may have already stolen

some sensitive information.

www.manaraa.com

 110

CHAPTER 8

CONCLUSION AND FUTURE WORK

8.1 Contributions

This thesis introduces novel methods for protecting sensitive information from malicious

software. It makes the following contributions:

• Storage Capsules – Protect sensitive files while they are accessed in plain text on the end

host.

• Network-Based Threat Detector – Identifies web requests from different network

applications, including malware.

• Information Leak Quantification – Measures the maximum amount of information that

can be leaked in outbound web traffic.

• Whitelist for Allowed Web Traffic – Filters web traffic from known good network

applications, leaving behind suspicious activity.

Storage Capsules are a new mechanism for securing files on a personal computer. They

are similar to existing encrypted file containers, but also protect information when it is decrypted.

Storage Capsules prevent all direct information leaks by an infected primary operating system or

application that accesses data during a secure mode. The Capsule system also cuts off many

covert channels. The major benefit of Storage Capsules over other security systems is that they

are compatible with existing operating systems and applications. Storage Capsules only add a

small overhead during secure mode, increasing time for the Apache build benchmark by 38%

compared to a native machine without virtualization. Transitions to and from secure mode are

also reasonable, taking 4.5 seconds to enter secure mode and 20 seconds to revert to normal mode

for a system with 512 MB of RAM. Storage Capsules fulfill their goal of protecting sensitive

files, while having only a small impact on performance and the user’s workflow.

A major part of the Storage Capsule research was examining potential covert channels.

We looked at the hardware layer, the VMM layer, external devices, and in the Capsule system

www.manaraa.com

 111

itself for places that an infected primary VM could hide data and recover it outside of secure

mode. This research explored covert channels from a new point of view because Storage

Capsules have a different threat model. Instead of two compromised processes running side-by-

side, one runs after the other has terminated and been erased. This makes it harder, but not

impossible, for the adversary to exploit covert channels. We identified some traditional covert

channels that may exist in Capsule, such as CPU state and disk cache state. This research also

identifies previously unexplored covert channels that are created by memory optimizations at the

VMM layer. The Capsule system makes an effort to mitigate as many covert channels as possible

and minimize the potential for malicious software to steal sensitive data.

The next part of this thesis focuses on achieving security at the network level. While

network security systems have less visibility and control than host-based security systems, they

benefit from more complete coverage, easier deployment, and additional resilience to attack. In

practice, it is best to deploy multiple layers of security. In the context of this thesis, the network

monitoring systems help protect information that cannot fit into Storage Capsules, such as

website passwords. They can also provide security for computers that either cannot or are not

running Storage Capsule software.

The first networking monitoring system presented in this thesis, Web Tap, examines

outbound web traffic. It uses novel techniques for examining both the formatting and timing of

web requests. The request headers and protocol fields are checked against specifications to detect

different implementations of the HTTP protocol. The resulting alerts indicate the presence of

different applications. Non-human request timing characteristics can also indicate the presence of

network applications. One method of identifying such activity is to measure the delay between

requests for the same site and examine the cumulative distribution of the sorted delay vector. This

vector contains clear jumps when requests are running on a timer. Another timing analysis

method counts the regularity of intervals that contain activity, as well as the bandwidth variation

within those intervals. This helps to detect unusually frequent activity that is not timer-driven,

such as spyware reporting every website that a user visits. Finally, we looked at the time of day

during which requests occurred to isolate requests that did not come from human activity.

The timing and formatting web traffic filters were evaluated against web browsing data

from 30 users over a 40-day time period, as well as against a specially constructed tunneling

program. During the 40 days, there were a total of 623 alerts, 45 of which were false positives.

This equates to 1.13 false positives per day for 30 users, which is a reasonably low number. Web

Tap was also able to detect a specially constructed tunneling program. The tunneling program

impersonated the format of a web browser, made periodic callbacks, executed shell commands,

www.manaraa.com

 112

and transferred files. Web Tap detected the tunneling program in about 7 hours, even if no

commands were executed and no data was sent.

This thesis next examined information leak quantification for outbound web traffic. Raw

web traffic contains a lot of data, and is a great place for malicious software to hide information.

The goal of leak measurement algorithms in this thesis was to discard repeated and constrained

bytes in legitimate web traffic, thus differentiating information leaks from benign activity.

Previously, the best method of doing this was to use a standard compression algorithm. However,

this naïve approach misses a lot of constrained data due to lack of protocol knowledge. We

processed each request and response with an analysis engine that is aware of HTTP, HTML, and

Javascript interactions. It extracts link URLs, form fields, and cookies from web server responses.

It also looks at the content of requests to determine expected header values for future requests.

The underlying principle of the leak quantification techniques is to create a library of expected

requests, and then compute the edit distance between actual requests and those in the library. This

yields an upper bound on the amount of original information that can be present in web requests.

The leak quantification engine was evaluated on controlled browsing scenarios, as well as

real traffic from ten users over a 30-day period. Only data from the controlled scenarios was used

to develop the engine; no modifications were made in response to observations from the real

traffic. In the best case, where the leak measurement algorithms were able to correctly identify all

links in a browsing scenario, we were able to discount 99.7% of the raw traffic because it was

constrained by the protocol, leaving just 1.9 bytes of information per request. In the worst

controlled scenario, we could discount 98.9% of raw traffic, leaving 14.5 bytes per request. For

the real web browsing traffic, volunteers used various types of browsers, and some cached objects

were unavailable to the analysis engine. Even so, we were able to discount 98.5% of the overall

raw bandwidth. A standard compression algorithm was only able to compress away 90.1% of the

data, an order of magnitude worse than our results. This thesis showed that most data in outbound

web requests is constrained by the protocol specifications and can be discarded when searching

for information leaks.

Malicious programs are no fundamentally different than legitimate applications when

looking at their network traffic. The systems described earlier in this thesis examine timing,

formatting, and request bandwidth, and can only say that traffic is coming from some network

application. They cannot say if an application has malicious intent. For this purpose, we employ a

whitelist. Each entry in the whitelist specifies a type of alert – timing, formatting, or bandwidth –

as well as an optional time, client, or server mask. Each whitelist entry describes the way in

which a program’s network behavior differs from that of a standard web browser. This not only

www.manaraa.com

 113

allows us to identify known unwanted programs that are running in a network, but also infer that

alerts not matching a whitelist entry are suspicious.

The web activity whitelist was evaluated by deploying it in a network with over 700

computers for a two-year period. This particular network had relatively open policies, meaning

that users could install any legitimate application they wished. At first, there was a higher rate of

new whitelist entries that peaked at 350 per month, or approximately 12 per day. As time went on

and the whitelist became more mature, the rate of new whitelist entries declined to 50 per month

– less than two per day. This deployment showed that whitelisting has a reasonable overhead in a

live environment with a diverse set of programs and operating systems. The whitelist was able to

successfully identify a wide variety of network applications, and led to the discovery of numerous

security threats.

8.2 Future Work

Every research project that solves an important problem stumbles upon two more. Here

are some of the key areas for future work that have come about as a result of this thesis:

• Further Investigation of Covert Channels: Chapter 3 describes several covert channels

through which malicious software could leak information in the Capsule system. However,

we are not sure how to most effectively exploit these covert channels and have not

measured their bandwidth. Implementing processes that transfer information via the covert

channels described in Chapter 3 would further the knowledge and understanding of how to

mitigate covert channels.

• Usability Study of Key Escape Sequences: Storage Capsules rely on asking the user to

enter keyboard escape sequences to securely transition between modes. It is unclear how

susceptible the average user would be to an attack where malware asked the user to enter a

file decryption password without first prompting for the escape sequence. It is also

unknown how effective education would be in mitigating such an attack. A usability study

on key escape sequences would help us understand how effective this mechanism is in

production systems.

• Browsing Session Tracking: Theoretically, a computer should only request a URL that

does not come from a link on a previous website when it is manually entered by the user.

Each request that does not come from a link on an open page is part of a new browsing

session initiated by the user, and should be subject to higher scrutiny. For example,

spyware might send a request to its home server that contains some private information.

www.manaraa.com

 114

This request would start a new browsing session, and should be considered suspicious

because it not a common or trusted site. Browsing session tracking has the potential to help

pinpoint spyware activity.

• Quantifying Leaks in Other Protocols: The current leak measurement algorithms focus

on HTTP. In the future, similar techniques can be applied to other protocols. E-mail

(SMTP) would be the most challenging because a majority of its data is free-form. File

attachments, however, will have their own structure that comes from the application that

created them. Other protocols and file formats are likely to have varying levels of entropy

that can be filtered out with techniques similar to those used for HTTP.

• Dynamic Script Analysis with Input Hints: Right now, the leak measurement engine

only executes Javascript that runs at page load time. Some scripts will dynamically

construct link URLs or make AJAX requests in response to user input, which we cannot

process with the current architecture. One option would be to speculatively generate

possible user input events, but this would lead to an exponential blow-up in processing

time. Instead, an agent that runs on each client could capture and record the actual events

that are sent to Javascript and forward them to the leak measurement engine. Then, it could

extract dynamic link URLs and only count the size of human input events.

• Integrate Leak Quantification with an IDS: Right now the leak quantification methods

presented in Chapter 5 are primarily useful for forensic analysis. In the future, they could

be integrated into an intrusion detection system. Before this can happen, research must take

place to determine appropriate thresholds for typical unconstrained outbound bandwidth.

Then, computers that violate these thresholds can be flagged for further investigation.

Performance optimizations would also be necessary for the leak quantification techniques

to handle traffic for a medium- to large-sized network. These optimizations would likely

include hardware support for edit distance calculation and caching of Javascript and web

page processing results.

• Multi-Organization Whitelist Deployment: The whitelisting system in Chapter 6 was

evaluated in a single enterprise network. We witnessed some overlap between applications

running on different computers in that network. However, it is unclear how the set of

programs in the test network compares to the overall distribution of software across all

enterprises. Deploying whitelist-based detection systems in a variety of enterprise networks

with different security policies would paint a better picture of the overall diversity and

distribution of network applications.

www.manaraa.com

 115

BIBLIOGRAPHY

[Abad01] C. Abad. IP Checksum Covert Channels and Selected Hash Collision.
Technical Report, 2001.

[Adobe09] Adobe Systems Incorporated. Adobe Flash Player.
http://www.macromedia.com/software/flash/about, Feb. 2009.

[Ahsan00] K. Ahsan. Covert Channel Analysis and Data Hiding in TCP/IP. Master's
Thesis, University of Toronto, 2000.

[Ahsan02] K. Ahsan and D. Kundur. Practical Data Hiding in TCP/IP. Proceedings of
the ACM Workshop on Multimedia Security, Dec. 2002.

[Anderson98] R. Anderson and F. Petitcolas. On the Limits of Steganography. IEEE
Journal of Selected Areas in Communications, 16(4):474-481, 1998.

[AP05] The Associated Press. DSW Data Theft Much Worse Than Predicted.
USATODAY, http://www.usatoday.com/tech/news/computersecurity/infotheft
/2005-04-19-credit-card-dsw_x.htm, Apr. 19 2005.

[Arbor09] Arbor Networks. Peakflow X. http://www.arbornetworks.com/en/peakflow-
x.html, Feb. 2009.

[Axelsson00] S. Axelsson. The Base-rate Fallacy and the Difficulty of Intrusion Detection.
ACM Transactions on Information and System Security, 3(3):186–205, Aug.
2000.

[Barford98] P. Barford, A. Bestavros, A. Bradley, and M. Crovella. Changes in Web
Client Access Patterns: Characteristics and Caching Implications. BU
Computer Science Technical Report, BUCS-TR-1998-023, 1998.

[Bell75] D. Bell and L. LaPadula. Secure Computer System: Unified Exposition and
Multics Interpretation. Technical Report MTR-2997, Mitre Corporation,
Bedford, MA, 1975.

[Biba75] K. Biba. Integrity Considerations for Secure Computer Systems. Technical
Report MTR-3153, Mitre Corporation, Bedford, MA, Jun. 1975.

[Blaze93] M. Blaze. A Cryptographic File System for UNIX. Proceedings of the 1st
ACM Conference on Computer and Communications Security, Fairfax, VA,
1993.

www.manaraa.com

 116

[Boebert85] W. Boebert and R. Kain. A Practical Alternative to Hierarchical Integrity
Policies. Proceedings of the 8th National Computer Security Conference,
Gaithersburg, MD, 1985.

[Borders04] K. Borders and A. Prakash. Web Tap: Detecting Covert Web Traffic.
Proceedings of the 11th ACM Conference on Computer and Communications
Security (CCS), Washington, DC, Oct. 2004.

[Borders06] K. Borders, X. Zhao, and A. Prakash. Securing Sensitive Content in a View-
Only File System. Proceedings of the 6th ACM Workshop on Digital Rights
Management, Oct. 2006.

[Borders07] K. Borders, A. Prakash, M. Zielinski. Spector: Automatically Analyzing
Shell Code. Proceedings of the 23rd Annual Computer Security Applications
Conference (ACSAC), Miami, FL, Dec. 2007.

[Brand85] Sheila L. Brand. DoD 5200.28-STD Department of Defense Trusted
Computer System Evaluation Criteria (Orange Book). National Computer
Security Center, Dec. 1985.

[Browne94] R. Browne. An Entropy Conservation Law for Testing the Completeness of
Covert Channel Analysis. Proceedings of the 2nd ACM Conference on
Computer and Communication Security (CCS), Nov. 1994.

[Brumley06] D. Brumley, J. Newsome, D. Song, H. Wang, and S. Jha. Towards Automatic
Generation of Vulnerability-based Signatures. Proceedings of the 2006 IEEE
Symposium on Security and Privacy, May 2006.

[Brumley07] D. Brumley, J. Caballero, Z. Liang, J. Newsome, and D. Song. Towards
Automatic Discovery of Deviations in Binary Implementations with
Applications to Error Detection and Fingerprint Generation. Proceedings of
the 16th USENIX Security Symposium, Boston, MA, Aug. 2007.

[Bugnion97] E. Bugnion, S. Devine, K. Govil, and M. Rosenblum. Disco: Running
Commodity Operating Systems on Scalable Multiprocessors. ACM
Transactions on Computer Systems, 15(4), Nov. 1997.

[Caballero07] J. Caballero, H. Yin, Z. Liang, and D. Song. Polyglot: Automatic Extraction
of Protocol Message Format Using Dynamic Binary Analysis. Proceedings
of the 14th ACM Conference on Computer and Communications Security
(CCS), Washington, DC, Oct. 2007.

[Cabuk04] S. Cabuk, C. Brodley, and C. Shields. IP Covert Timing Channels: Design
and Detection. Proceedings of the 11th ACM Conference on Computer and
Communications Security (CCS), Washington, DC, Oct. 2004.

[Castro06] S. Castro. How to Cook a Covert Channel. hakin9,
http://www.grayworld.net/projects/cooking_channels/hakin9_cooking_chann
els_en.pdf, Jan. 2006.

www.manaraa.com

 117

[Chen01] P. Chen and B. Noble. When Virtual is Better than Real. Proceedings of the
8th Workshop on Hot Topics in Operating Systems, May 2001.

[Chow04] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and M. Rosenblum.
Understanding Data Lifetime via Whole System Simulation. Proceedings of
the 13th USENIX Security Symposium, San Diego, CA, Aug. 2004.

[Christodorescu05] M. Christodorescu, S. Jha, S. Seshia, D. Song, and R. Bryant. Semantics-
aware Malware Detection. Proceedings of the 2005 IEEE Symposium on
Security and Privacy, May 2005.

[Cid09] D. Cid. OSSEC Open Source Host-based Intrusion Detection System.
http://www.ossec.net/, Feb. 2009.

[Czeskis08] A. Czeskis, D. St. Hilair, K. Koscher, S. Gribble, and T. Kohno. Defeating
Encrypted and Deniable File Systems: TrueCrypt v5.1a and the Case of the
Tattling OS and Applications. Proceedings of the 3rd USENIX Workshop on
Hot Topics in Security (HOTSEC '08), Aug. 2008.

[Danzig92] P. Danzig, S. Jamin, R. C´aceres, D. Mitzel, and D. Estrin. An Empirical
Workload Model for Driving Wide-area TCP/IP Network Simulations.
Internetworking: Research and Experience, 3(1):1– 26, 1992.

[Delio04] M. Delio. Linux: Fewer Bugs than Rivals. Wired Magazine,
http://www.wired.com/software/coolapps/news/2004/12/66022, Dec. 2004.

[Denning76] D. Denning. A Lattice Model of Secure Information Flow. Communications
of the ACM, 19(5):236–243, May 1976.

[Denning77] D. Denning and P. Denning. Certification of Programs for Secure
Information Flow. Communications of the ACM, 20(7):504–513, Jul. 1977.

[Dingledine04] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The Second-generation
Onion Router. Proceedings of the 13th USENIX Security Symposium, Aug.
2004.

[Dunlap02] G. Dunlap, S. King, S. Cinar, M. Basrai, and P. Chen. ReVirt: Enabling
Intrusion Analysis through Virtual-Machine Logging and Replay.
Proceedings of the 2002 Symposium on Operating Systems Design and
Implementation (OSDI), Dec. 2002.

[Duska97] B. Duska, D. Marwood, and M. J. Feeley. The Measured Access
Characteristics of World Wide Web Client Proxy Caches. Proceedings of
USENIX Symposium on Internet Technology and Systems, Dec. 1997.

[Dyatlov03] A. Dyatlov and S. Castro. Exploitation of Data Streams Authorized by a
Network Access Control System for Arbitrary Data Transfers: Tunneling and
Covert Channels Over the HTTP Protocol. http://gray-world.net/projects/
papers/covert_paper.txt, Jun. 2003.

www.manaraa.com

 118

[Dyatlov09a] A. Dyatlov and S. Castro. Wsh ‘Web Shell’. http://www.gray-world.net/
pr_wsh.shtml, Feb. 2009.

[Dyatlov09b] A. Dyatlov. Firepass. http://www.gray-world.net/pr_firepass.shtml, Feb.
2009.

[Feng03] H. Feng, O. Kolesnikov, P. Fogla, W. Lee, and W. Gong. Anomaly Detection
Using Call Stack Information. Proceedings of the 2003 IEEE Symposium on
Security and Privacy, May 2003.

[Fenton74] J. Fenton. Memoryless Subsytems. The Computer Journal, 17(2):143–147,
May 1974.

[Fielding99] R. Fielding, J. Gettys, J. Moful, H. Frystyk, L. Masinter, P. Leach, and T.
Berners-Lee. Hyptertext Transfer Protocol – HTTP/1.1. Request for
Comments (RFC) 2616, http://www.w3.org/Protocols/rfc2616/rfc2616.html,
Jun. 1999.

[Fisk02] G. Fisk, M. Fisk, C. Papadopoulos, and J. Neil. Eliminating Steganography
in Internet Traffic with Active Wardens. Proceedings of the 5th International
Workshop on Information Hiding, Oct. 2002.

[Foster02] J. Foster, T. Terauchi, and A. Aiken. Flow-sensitive Type Qualifiers.
Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), Berlin, Germany, Jun. 2002.

[Fruhwirth09] C. Fruhwirth. LUKS – Linux Unified Key Setup. http://code.google.com/p/
cryptsetup/, Feb. 2009.

[Gailly08] J. Gailly and M. Adler. The gzip Home Page. http://www.gzip.org/, Feb.
2009.

[Garfinkel03a] T. Garfinkel, B. Pfaff, J, Chow, M. Rosenblum, D. Boneh. Terra: a Virtual
Machine-based Platform for Trusted Computing. Proceedings of the 19th
ACM Symposium on Operating Systems Principles (SOSP), Bolton Landing,
NY, Oct. 2003.

[Garfinkel03b] T. Garfinkel. Traps and Pitfalls: Practical Problems in System Call
Interposition Based Security Tools. Proceedings of the10th ISOC Symposium
on Network and Distributed System Security (NDSS), San Diego, CA, Feb.
2003.

[Garfinkel03c] T. Garfinkel and M. Rosenblum. A Virtual Machine Intropsection Based
Architecture for Intrusion Detection. Proceedings of the 10th ISOC
Symposium on Network and Distributed System Security (NDSS), San Diego,
CA, Feb. 2003.

[Garfinkel05] T. Garfinkel and M. Rosenblum. When Virtual is Harder than Real: Security
Challenges in Virtual Machine Based Computing Environments.
Proceedings of the 10th Workshop on Hot Topics in Operating Systems, Jun.
2005.

www.manaraa.com

 119

[Gat76] I. Gat and H. Saal. Memoryless Execution: A Programmer’s Viewpoint.
Software: Practice and Experience, 6(4):463–471, 1976.

[Giles03] J. Giles and B. Hajek. An Information-theoretic and Game-theoretic Study of
Timing Channels. IEEE Transactions on Information Theory, 48:2455–2477,
Sep. 2003.

[Gligor93] V. Gligor. A Guide to Understanding Covert Channel Analysis of Trusted
Systems. National Computer Security Center Technical Report, NCSC-TG-
030, Ft. George G. Meade, MD, Nov. 1993.

[Gold79] B. Gold, R. Linde, R. Peeler, M. Schaefer, J. Scheid, and P. Ward. A
Security Retrofit of VM/370. AFIPS Proceedings, 1979 National Computer
Conference, 1979.

[Goldberg74] R. Goldberg. Survey of Virtual Machine Research. IEEE Computer, pp. 34–
35, June 1974.

[Govil99] K. Govil, D. Teodosiu, Y. Huang, and M. Rosenblum. Cellular Disco:
Resource Management Using Virtual Clusters on Shared-Memory
Multiprocessors. Proceedings of the Symposium on Operating System
Principles, Dec. 1999.

[Gray94] J. Gray III. Countermeasures and Tradeoffs for a Class of Covert Timing
Channels. Hong Kong University of Science and Technology Technical
report, 1994.

[Gu08] G. Gu, R. Perdisci, J. Zhang, and W. Lee. BotMiner: Clustering Analysis of
Network Traffic for Protocol- and Structure-Independent Botnet Detection.
Proceedings of the 17th USENIX Security Symposium, San Jose, CA, Jul.
2008.

[Handley01] M. Handley, V. Paxson, and C. Kreibich. Network Intrusion Detection:
Evasion, Traffic Normalization, and End-to-End Protocol Semantics.
Proceedings of the 10th USENIX Security Symposium, Aug. 2001.

[Halder05] V. Haldar, D. Chandra, and M. Franz. Practical, Dynamic Information Flow
for Virtual Machines. Proceedings of the 2nd International Workshop on
Programming Language Interference and Dependence, London, UK, Sep.
2005.

[Halderman08] J. Halderman, S. Schoen, N. Heninger, W. Clarkson, W. Paul, J. Calandrino,
A. Feldman, J. Appelbaum, and E. Felten. Lest We Remember: Cold Boot
Attacks on Encryption Keys. Proceedings of 17th USENIX Security
Symposium, Jul. 2008.

[Heinz04] F. Heinz, J. Oster. Nstxd – IP Over DNS Tunneling Daemon.
http://www.digipedia.pl/man/nstxd.7.html, Mar. 2005.

[Hofmeyr98] S. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion Detection Using
Sequences of System Calls. Journal of Computer Security, 6:151–180, 1998.

www.manaraa.com

 120

[Hopster09] Hopster. Bypass Firewall – Bypass Proxy – HTTP Tunnel Software.
http://www.hopster.com/, Feb. 2009.

[Huffman52] D. Huffman. A Method for the Construction of Minimum Redundancy
Codes. Proceedings of the Institute of Radio Engineers, 40:1098–1101, 1952.

[IBM09a] IBM Internet Security Systems (ISS). RealSecure Network Gigabit.
http://www-935.ibm.com/services/us/index.wss/offering/iss/a1026965, Feb.
2009.

[IBM09b] IBM Internet Security Systems (ISS). Proventia Network Intrusion
Prevention System. http://www-935.ibm.com/services/us/index.wss/
offerfamily/iss/a1030570, Feb. 2009.

[IEEE08] IEEE Computer Society. IEEE Standard for Cryptographic Protection of
Data on Block-Oriented Storage Devices. IEEE Std 1619-2007, Apr. 2008.

[Jaeger03] T. Jaeger, R. Sailer, and X. Zhang. Analyzing Integrity Protection in the
SELinux Example Policy. Proceedings of the 12th USENIX Security
Symposium, Washington, D.C., Aug. 2003.

[Joshi05] A. Joshi, S. King, G. Dunlap, and P. Chen. Detecting Past and Present
Intrusions through Vulnerability-Specific Predicates. Proceedings of the
Proceedings of the 20th ACM Symposium on Operating Systems Principles
(SOSP), Brighton, UK, Oct. 2005.

[Kang95] M. Kang, I. Moskowitz, and D. Lee. A Network Version of the Pump.
Proceedings of the 1995 IEEE Symposium in Security and Privacy, May
1995.

[Katayama03] F. Katayama. Hacker hits up to 8M credit cards. CNN, http://money.cnn.com/
2003/02/18/technology/creditcards/, Feb. 27, 2003.

[Kelly02] T. Kelly. Thin-Client Web Access Patterns: Measurements From a Cache-
busting Proxy. Computer Communications, 25(4):357–366, Mar. 2002.

[Kemmerer83] R. Kemmerer. An Approach to Identifying Storage and Timing Channels.
ACM Transactions on Computer Systems, 1(3), Aug. 1983.

[Kim94] G. Kim and E. Spafford. The Design and Implementation of Tripwire: A File
System Integrity Checker. Proceedings of the 2nd AVM Conference on
Computer and Communications Security (CCS), Fairfax, VA, Nov. 1994.

[King05] S. King, P. Chen. Backtracking Intrusions. ACM Transactions on Computer
Systems (TOCS), 23(1):51-76, Feb. 2005.

[Kocher96] P. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems. Advances in Cryptology: Proceedings of CRYPTO
’96. Aug. 1996.

www.manaraa.com

 121

[Kruegel02] C. Kruegel, T. Toth and E. Kirda. Service Specific Anomaly Detection for
Network Intrusion Detection. Proceedings of the Symposium on Applied
Computing (SAC), Spain, Mar. 2002.

[Kruegel03] C. Kruegel and G. Vigna. Anomaly Detection of Web-based Attacks.
Proceedings of the 10th ACM Conference on Computer and Communications
Security (CCS), Washington, DC, Oct. 2003.

[Lagerkvist08] O. Lagerkvist. ImDisk Virtual Disk Driver. http://www.ltr-data.se/
opencode.html#ImDisk, Dec. 2008.

[Liskov02] M. Liskov, R. Rivest, and D. Wagner. Tweakable Block Ciphers. In
Advances in Cryptology – CRYPTO ’02, Aug. 2002.

[Malan00] G. Malan, D.Watson, F. Jahanian, and P. Howell. Transport and Application
Protocol Scrubbing. Proceedings of the IEEE INFOCOM 2000 Conference,
Mar. 2000.

[Mannan05] M. Mannan and P. van Oorschot. On Instant Messaging Worms, Analysis
and Countermeasures. Proceedings of the ACM Workshop on Rapid Malcode
(WORM), Washington, DC, Oct. 2005.

[McAfee09] McAfee, Inc. Antivirus Software and Intrusion Prevention Solutions.
http://www.mcafee.com/us/, Feb. 2009.

[McCamant08] S. McCamant and M. Ernst. Quantitative Information Flow as Network Flow
Capacity. Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), Tuscon, AZ, Jun. 2008.

[McHugh95] J. McHugh. Covert Channel Analysis. Technical Report, Dec. 1995.

[Meushaw00] R. Meushaw and D. Simard. NetTop: Commercial Technology in High
Assurance Applications. http://www.vmware.com/pdf/TechTrendNotes.pdf,
2000.

[Microsoft09] Microsoft Corporation. BitLocker Drive Encryption: Technical Overview.
http://technet.microsoft.com/en-us/library/cc732774.aspx, Feb. 2009.

[Morse05] K. Morse. Compression Tools Compared. Linux Journal, 2005(137):3, Sep.
2005.

[Moskowitz94] I. Moskowitz and A. Miller. Simple Timing Channels. Proceedings of the
IEEE Symposium on Security and Privacy, May 1994.

[Mozilla09a] Mozilla. The Firefox Web Browser. http://www.mozilla.com/firefox/, Feb.
2009.

[Mozilla09b] Mozilla. SpiderMonkey (Javscript-C) Engine. http://www.mozilla.org/js/
spidermonkey/, Feb. 2009.

www.manaraa.com

 122

[Mukherjee94] B. Mukherjee, L. Heberlein, and K. Levitt. Network Intrusion Detection.
Network, IEEE, 8(3):26–41, 1994.

[Myers97] A. Myers and B. Liskov. A Decentralized Model for Information Flow
Control. Proceedings of the 16th ACM Symposium on Operating Systems
Principles (SOSP), Santi-Malo, France, 1997.

[Myers99] A. Myers. JFlow: Practical Mostly-Static Information Flow Control.
Proceedings of the 26th ACM Symposium on Principles of Programming
Languages (POPL), San Antonio, TX, Jan. 1999.

[Myers01] A. Myers, N. Nystrom, L. Zheng, and S. Zdancewic. Jif: Java information
flow. http://www.cs.cornell.edu/jif, Jul. 2001.

[Netwitness09] NetWitness Corporation. NetWitness – Total Network Knowledge.
http://www.netwitness.com, Feb. 2009.

[Newsome05a] J. Newsome and D. Song. Dynamic Taint Analysis for Automatic Detection,
Analysis, and Signature Generation of Exploits on Commodity Software.
Proceedings of the 12th ISOC Symposium on Network and Distributed System
Security (NDSS), San diego, CA, Feb. 2005.

[Newsome05b] J. Newsome, B. Karp, and D. Song. Polygraph: Automatically Generating
Signatures for Polymorphic Worms. Proceedings of the 2005 IEEE
Symposium on Security and Privacy, Oakland, CA, May 2005.

[Nguyen-Tuong05] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and D. Evans.
Automatically Hardening Web Applications Using Precise Tainting.
Proceedings of the 20th IFIP International Information Security Conference,
Makuhari Messe, Chiba, Japan, Jun. 2005.

[Niksic98] H. Niksic. GNU Wget. – The Noninteractive Downloading Utility.
http://www.gnu.org/software/wget/, Sep. 1998.

[NSA09] National Security Agency. Security-enhanced Linux. http://www.nsa.gov/
selinux, Feb. 2009.

[Oberheide07] J. Oberheide, E. Cookie, and F. Jahanian. Rethinking Antivirus: Executable
Analysis in the Network Cloud. Proceedings of the 2nd USENIX Workshop
on Hot Topics in Security (HOTSEC '07), Boston, MA, Aug. 2007.

[OpenDNS09] OpenDNS. Features – Content Filtering.
http://www.opendns.com/solutions/smb/, Feb. 2009.

[Oscar09] OSCAR Protocol for AOL Instant Messaging. http://dev.aol.com/aim/oscar/,
Feb. 2009.

[Pavlov09] Igor Pavlov. LZMA SDK (Software Development Kit). http://www.7-
zip.org/sdk.html, Feb. 2009.

www.manaraa.com

 123

[Paxson98] V. Paxson. Bro: A System for Detecting Network Intruders in Real-time.
Proceedings of the 7th USENIX Security Symposium, Jan. 1998.

[Percival05] C. Percival. Cache Missing for Fun and Profit. Proceedings of BSDCan
2005, May 2005.

[Petitcolas99] F. Petitcolas, R. Anderson, and M. Kuhn. Information Hiding – A Survey.
Proceedings of the IEEE, 87(7):1062-1078, Jul. 1999.

[Polychronakis06] M. Polychronakis, K. Anagnostakis, and E. Markatos. Network-Level
Polymorphic Shellcode Detection Using Emulation. Proceedings of the
Conference on Detection of Intrusions and Malware and Vulnerability
Assessment (DIMVA), 2006.

[Proctor07] P. Proctor, R. Mogull, and E. Quellet. Magic Quadrant for Content
Monitoring and Filtering and Data Loss Prevention. Gartner RAS Core
Research Note, G00147610, Apr. 2007.

[Provos04] N. Provos. A Virtual Honeypot Framework. Proceedings of the 13th USENIX
Security Symposium, Aug. 2004.

[Randazzo04] M. Randazzo, M. Keeeney, E. Kowalski, D. Cappelli, and A. Moore. Insider
Threat Study: Illicit Cyber Activity in the Banking and Finance Sector.
CERT Report by U.S. Secret Service and CERT Coordination Center,
http://www.secretservice.gov/ ntac/its_report_040820.pdf, Aug. 2004.

[Reuters06] Reuters. U.S. Says Personal Data on Millions of Veterans Stolen. The
Washington Post, http://www.washingtonpost.com/wp-dyn/content/article/
2006/05/22/AR2006052200690.html, May 22 2006.

[Richardson07] R. Richardson. CSI Computer Crime and Security Survey. 2007.

[Rissanen79] J. Rissanen and G. Langdon. Arithmetic Coding. IBM Journel of Research
and Development, 23(2):146–162, Mar. 1979.

[Roesch99] M. Roesch. Snort – Lightweight Intrusion Detection for Networks.
Proceedings of the 13th USENIX Systems Administration Conference (LISA),
Seattle, WA, 1999.

[Roshal09] A. Roshal. WinRAR Archiver, a Powerful Tool to Process RAR and ZIP
Files. http://www.rarlab.com/, Feb. 2009.

[Rowland97] C. Rowland. Covert Channels in the TCP/IP Protocol Suite. First Monday,
1996.

[RSA07] RSA Security Inc. RSA Data Loss Prevention Suite – Solutions Brief.
http://www.rsa.com/products/EDS/sb/DLPST_SB_1207-lowres.pdf, 2007.

[Rutkowska05] J. Rutkowska. Red Pill... Or How To Detect VMM Using (Almost) One CPU
Instruction. http://invisiblethings.org/papers/redpill.html, 2005.

www.manaraa.com

 124

[Sailer04] R. Sailer, X. Zhang, T. Jaeger, and L. Van Doorn. Design and
Implementation of a TCG-Based Integrity Measurement Architecture.
Proceedings of the 13th USENIX Security Symposium, Aug. 2004.

[Sandvine09] Sandvine, Inc. Sandvine – Intelligent Broadband Network Management.
http://www.sandvine.com, Feb. 2009.

[Schear06] N. Schear, C. Kintana, Q Zhang, and A. Vahdat. Glavlit: Preventing
Exfiltration at Wire Speed. Proceedings of the 5th Workshop on Hot Topics in
Networks (HotNets), Nov. 2006.

[Secunia09a] Secunia. Xen 3.x – Vulnerability Report. http://secunia.com/product/15863/
?task=statistics, Feb. 25th 2009.

[Secunia09b] Secunia. Linux Kernel 2.6.x – Vulnerability Report. http://secunia.com/
product/2719/ ?task=statistics, Feb. 25th 2009.

[Servetto01] S. Servetto and M. Vetterli. Communication Using Phantoms: Covert
Channels in the Internet. Proceedings of the IEEE International Symposium
on Information Theory, Jun. 2001.

[Seward07] J. Seward. bzip2 and libbzip2, version 1.0.5 – A Program and Library for
Data Compression. http://www.bzip.org/1.0.5/bzip2-manual-1.0.5.html,
Dec. 2007.

[Shankar06] U. Shankar, T. Jaeger, and R. Sailer. Toward Automated Information-Flow
Integrity Verification for Security-Critical Applications. Proceedings of the
13th ISOC Symposium on Network and Distributed System Security (NDSS),
San Diego, CA, Feb. 2006.

[Shannon51] C. Shannon. Prediction and Entropy of Printed English. Bell System
Technical Journal, 30:50–64, 1951.

[Sun09] Sun Microsystems. Java. http://www.java.com, 2009.

[Symantec09] Symantec Corporation. Spyware Remover: Norton AntiVirus.
http://www.symantec.com/norton/antivirus, Feb. 2009.

[TCG06] Trusted Computing Group. Trusted Platform Module Main Specification.
http://www.trustedcomputinggroup.org, Ver. 1.2, Rev. 94, June 2006.

[TippingPoint09] TippingPoint Technologies, Inc. TippingPoint Intrusion Prevention Systems.
http://www.tippingpoint.com/products_ips.html, Feb. 2009.

[Trostle91] J. Trostle. Multiple Trojan Horse Systems and Covert Channel Analysis.
Proceedings of Computer Security Foundations Workshop IV, Jun. 1991.

[TrueCrypt09] TrueCrypt Foundation. TrueCrypt – Free Open-Source On-The-Fly Disk
Encryption Software. http://www.truecrypt.org/, Feb. 2009.

www.manaraa.com

 125

[Vasudevan06] A. Vasudevan and R. Yerraballi. Cobtra: Fine-Grained Malware Analysis
Using Stealth Localized-Executions. Proceedings of the 2006 IEEE
Symposium on Security and Privacy, May 2006.

[Vigna04] G. Vigna, W. Robertson, and D. Balzarotti. Testing Network-Based Intrusion
Detection Signatures Using Mutant Exploits. Proceedings of the 11th ACM
Conference on Computer and Communications Security (CCS), Washington,
DC, Oct. 2004.

[Vontu09] Vontu, Inc. Vontu – Data Loss Prevention, Confidential Data Protection.
http://www.vontu.com, Feb. 2009.

[Vrable05] M. Vrable, J. Ma, J. Chen, D. Moore, E. Vandekieft, A. Snoeren, G. Voelker,
and S. Savage. Scalability, Fidelity, and Containment in the Potemkin Virtual
Honeyfarm. ACM SIGOPS Operating Systems Review, 39(5):148–162, Dec.
2005.

[Wagner74] R. Wagner and M. Fischer. The String-to-String Correction Problem. Journal
of the ACM, 21(1):168–173, 1974.

[Wagner01] D. Wagner and D. Dean. Intrusion Detection via Static Analysis.
Proceedings of the 2001 IEEE Symposium on Security and Privacy,
Oakland, CA, May 2001.

[Waldspurger02] C. Waldspurger. Memory Resource Management in VMware ESX Server. In
Proceedings of the 5th Symposium on Operating Systems Design and
Implementation, Dec. 2002.

[Wang04] K. Wang and S. Stolfo. Anomalous Payload-Based Network Intrusion
Detection. Proceedings of the 7th International Symposium on Recent
Advances in Intrusion Detection, Sophia Antipolis, France, Sep. 2004.

[Wang06] Z. Wang and R. Lee. Covert and Side Channels Due to Processor
Architecture. Proceedings of the 22nd Annual Computer Security
Applications Conference (ACSAC), Dec. 2006.

[Weber07] T. Weber. Criminals ‘May Overwhelm the Web’. BBC News,
http://news.bbc.co.uk/1 /hi/business/6298641.stm, Jan. 25 2007.

[Websense09] Websense, Inc. Web Security Suite. http://www.websense.com/global/en/
ProductsServices/WSSecuritySuite/, Feb. 2009.

[Winzip09] WinZip International LLC. WinZip – The Zip File Utility for Windows.
http://www.winzip.com/, Feb. 2009.

[Wray91] J. Wray. An Analysis of Covert Timing Channels. Proceedings of the 1991
IEEE Symposium on Security and Privacy, Oakland, CA, May 1991.

[Wright02] C. Wright, C. Cowan, S. Smalley, J. Morris, and G. Kroah-Hartman. Linux
Security Modules: General Security Support for the Linux Kernel.
Proceedings of the 11th USENIX Security Symposium, Aug. 2002.

www.manaraa.com

 126

[XenSource09] XenSource, Inc. Xen Community. http://xen.xensource.com/, Feb. 2009.

[Yumerefenendi07] A. Yumerefendi, B. Mickle, and L. Cox. TightLip: Keeping applications
from spilling the beans. Proceedings of the 4th USENIX Symposium on
Networked Systems Design and Implementation (NSDI), Apr. 2007.

[Zhang00] Y. Zhang and V. Paxson. Detecting Backdoors. Proceedings of the 9th
USENIX Security Symposium, Aug. 2000.

[Ziv77] J. Ziv and A. Lempel. A Universal Algorithm for Sequential Data
Compression. IEEE Transactions on Information Theory, 23(3):337–343,
May 1977.

[Zimmerman95] P.R. Zimmermann. The Official PGP User’s Guide. MIT Press, 1995.

